Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
b: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24=0\)
\(\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\)
a: \(\Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
`1)(x+2)(x+3)(x-7)(x-8)=144`
`<=>[(x+2)(x-7)][(x+3)(x-8)]=144`
`<=>(x^2-5x-14)(x^2-5x-24)=144`
`<=>(x^2-5x-19)^2-25=144`
`<=>(x^2-5x-19)^2-169=0`
`<=>(x^2-5x-6)(x^2-5x-32)=0`
`+)x^2-5x-6=0`
`<=>` $\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.$
`+)x^2-5x-32=0`
`<=>` $\left[ \begin{array}{l}x=\dfrac{5+3\sqrt{17}}{2}\\x=\dfrac{5-3\sqrt{17}}{2}\end{array} \right.$
Vậy `S={-1,6,\frac{5+3\sqrt{17}}{2},\frac{5-3\sqrt{17}}{2}}`
1: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)=144\)
\(\Leftrightarrow\left(x^2-7x+2x-14\right)\left(x^2-8x+3x-24\right)=144\)
\(\Leftrightarrow\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+336-144=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+192=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-6\left(x^2-5x\right)-32\left(x^2-5x\right)+192=0\)
\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x-6\right)-32\left(x^2-5x-6\right)=0\)
\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x-32\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)\left(x^2-5x-32\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+1=0\\x^2-5x-32=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\\x=\dfrac{5-3\sqrt{17}}{2}\\x=\dfrac{5+3\sqrt{17}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{6;-1;\dfrac{5-3\sqrt{17}}{2};\dfrac{5+3\sqrt{17}}{2}\right\}\)
cấy pt dạng ni lớp 8 học rồi mà :v
chỉ là thêm công thức nghiệm vào thôi ._.
1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0
<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0
<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0
Đặt t = x2 + 10x + 16
pt <=> t( t + 8 ) + 16 = 0
<=> t2 + 8t + 16 = 0
<=> ( t + 4 )2 = 0
<=> ( x2 + 10x + 16 + 4 )2 = 0
<=> ( x2 + 10x + 20 )2 = 0
=> x2 + 10x + 20 = 0
Δ' = b'2 - ac = 25 - 20 = 5
Δ' > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)
\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)
Vậy ...
2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0
<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0
<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0
Đặt t = x2 + 5x + 4
pt <=> t( t + 2 ) - 24 = 0
<=> t2 + 2t - 24 = 0
<=> ( t - 4 )( t + 6 ) = 0
<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0
<=> x( x + 5 )( x2 + 5x + 10 ) = 0
Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm
=> x = 0 hoặc x = -5
Vậy ...
3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0
<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0
<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0
Đặt t = x2 - 8x + 7
pt <=> t( t + 8 ) - 20 = 0
<=> t2 + 8t - 20 = 0
<=> ( t - 2 )( t + 10 ) = 0
<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0
<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0
<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)
+) x2 - 8x + 5 = 0
Δ' = b'2 - ac = 16 - 5 = 11
Δ' > 0 nên có hai nghiệm phân biệt
\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)
\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)
+) x2 - 7x + 18 = 0
Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm
Vậy ...
1.(x+2) . (x+4) . (x+6) . (x+8) + 16 = 0
(x+2) . (x+4) . (x+6) . (x+8) = -16
x4 . ( 2 + 4 + 6 + 8 ) = -16
x4 . 20 = -16
x4 = -16 : 20
x4 = -4 / 5
x = \(\sqrt[4]{\frac{-4}{5}}\)
Tk cho mình nhé !!