Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình.
Vì G là trọng tâm của tam giác ABC => \(\frac{AG}{AM}=\frac{2}{3}\)
Mà AG = 8 => AM = 8.3 : 2 = 12 (cm)
Tiếp, ta có: \(\frac{GM}{AM}=\frac{1}{3}\)
Mà AM = 12 (đã tính) => GM = 12.1 : 3 = 4 (cm)
ban tu ve hinh nha:
xet tam giacAMB va tam giaAMC
AB=AC
AM chung
M1=m2
suy ra hai tam giacAmb va amc bang nhau.
Câu 1:
Vì $G$ là trọng tâm $ABC$ và $AM$ là trung tuyến nên $AG=\frac{2}{3}AM$
$\Rightarrow AG=\frac{2}{3}.6=4$ (cm)
$AM=6$ (cm) - theo giả thiết
Câu 2:
$f(0)=a.0^2+b.0+c=2019$
$\Rightarrow c=2019$
$f(1)=a.1^2+b.1+c=a+b+c=2020$
$\Rightarrow a+b=2020-c=2010-2019=1(1)$
$f(-1)=a(-1)^2+b(-1)+c=a-b+c=2020$
$\Rightarrow a-b=2020-c=2020-2019=1(2)$
Lấy $(1)+(2)\Rightarrow 2a=2\Rightarrow a=1$
$b=a-1=1-1=0$
Vậy đa thức $f(x)=x^2+2019$
$f(2)=2^2+2019=2023$
a: Xét ΔABD và ΔACE có
AB=AC
góc A chung
AD=AE
Do đó: ΔABD=ΔACE
b: Xét ΔGCB có \(\widehat{GBC}=\widehat{GCB}\)
nên ΔGBC cân tại G
c: Xét ΔBAG và ΔCAG có
AB=AC
AG chung
BG=CG
DO đó: ΔBAG=ΔCAG
Suy ra: \(\widehat{BAG}=\widehat{CAG}\)
hay AG là tia phân giác của góc BAC
2)AM=AG:2/3=6x3/2=9(cm)
1)
\(8x^2yz.\left(-2\right)xy^2z^3=-16x^3y^3z^4\)
2)