Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=6y=9z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{9}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{9}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{6}+\frac{1}{9}}=\frac{860}{\frac{43}{90}}=1800\)
\(\Rightarrow\begin{cases}x=1800.\frac{1}{5}=360\\y=1800.\frac{1}{6}=300\\z=1800.\frac{1}{9}=200\end{cases}\)
Vậy ..............
Ta sẽ đưa các tích về 1 dãy tỉ số
\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x}{15}=\frac{y}{9},7y=9z\Leftrightarrow\frac{y}{9}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7},x-y+z=117\left(gt\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau cho dãy tỉ số trên ta được
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\Rightarrow x=15.9=135,y=9.9=81,z=7.9=63\)
Vậy \(x=135,y=81,z=63\)
Ta có: \(3x=5y=\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{15}=\frac{y}{9}\)
\(7y=9z=\frac{y}{9}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\)
\(\Rightarrow\frac{x}{15}=9\Rightarrow x=9\cdot15=135\)
\(\frac{y}{9}=9\Rightarrow y=9\cdot9=81\)
\(\frac{z}{7}=9\Rightarrow z=9\cdot7=63\)
Vậy x=135, y=81 và z=63
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
b) Ta có: \(\text{10x=6y=5z}\Rightarrow\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\) và \(x+y-z=24\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
Khi đó: \(\frac{x}{3}=12\Rightarrow x=36\)
\(\frac{y}{5}=12\Rightarrow y=60\)
\(\frac{z}{6}=12\Rightarrow z=72\)
Vậy\(x=36\) :\(y=60\) \(z=72\)
1) \(35x=21y\Rightarrow\frac{21}{35}=\frac{x}{y}=\frac{3}{5}=>\frac{x}{3}=\frac{y}{5}\) (1)
\(21y=15z\Rightarrow\frac{15}{21}=\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y-z}{3+5-7}=\frac{27}{1}=27\)
=> \(\frac{x}{3}=27\Rightarrow x=27.3=81\)
\(\frac{y}{5}=27\Rightarrow y=27.5=135\)
\(\frac{z}{7}=27\Rightarrow z=27.7=189\)
2) \(10x=6y\Rightarrow\frac{6}{10}=\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) (1)
\(6y=5z\Rightarrow\frac{5}{6}=\frac{y}{z}\Rightarrow\frac{y}{5}=\frac{z}{6}\)(2)
Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
(còn phần dưới thì tự tính ra x, y, z đc rồi đó ^^)
a)5x=6y=20z=>\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\) và x-y-z=3
Áp dụng t/c của dãy tỉ số bàng nhau ta có:
\(\frac{x}{12}=\frac{y}{10}=\frac{z}{3}\)=\(\frac{x-y-z}{12-10-3}=\frac{3}{-1}=-3\)
=>x=(-3).12=-36
y=(-3).10=-30
z=(-3).3=-9
b)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)và x+y+z=-120
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{33+4+5}=-\frac{120}{42}=-\frac{20}{7}\)
=>x=-30/7 . 33 =-990/7
y=-20/7 . 4=-80/7
z=-20/7 . 5=-100/7
a) Theo đề được: \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{20}}=\frac{x-y-z}{\frac{1}{5}-\frac{1}{6}-\frac{1}{20}}=\frac{3}{-\frac{1}{60}}=-180\)
\(\frac{x}{\frac{1}{5}}=5x=-180\Rightarrow x=-180:5=-36\)
6y=-180 => y= - 30
20z = -180 => z = -9
b) Đề sai
\(\text{3x=6y=9z}\Rightarrow\frac{3x}{18}=\frac{6y}{18}=\frac{9z}{18}\Rightarrow\frac{x}{6}=\frac{y}{3}=\frac{z}{2}\)
Áp dụng tính chất của DTSBN:
\(\frac{x}{6}=\frac{y}{3}=\frac{z}{2}=\frac{x-z}{6-2}=\frac{2}{4}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{6\cdot1}{2}=3\)
\(\frac{y}{3}=\frac{1}{2}\Rightarrow y=\frac{3\cdot1}{2}=\frac{3}{2}=1.5\)
\(\frac{z}{2}=\frac{1}{2}\Rightarrow z=\frac{2\cdot1}{2}=1\)
Vậy x=3; y=1.5 và z=1