K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(=>\frac{y-x}{xy}=\frac{1}{xy}\)

\(=>xy^2-x^2y=xy\)

\(=>xy^2-x^2y-xy=0\)

\(=>x.\left(y^2-xy-y\right)=0\)

\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)

Ta thấy \(y^2-xy-y=0\)

\(=>y.\left(y-x-y\right)=0\)

\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)

Từ 1 và 2 => x = y = 0

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)

\(\Rightarrow y-x=1\)

Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)

11 tháng 10 2016

 Câu trả lời hay nhất:  từ giả thiết thứ nhất dặt x= 3t , y =5t , z = -2t 
thay vào giả thiết thứ 2 ta có 15t - 5t - 6t = 124 <=> t =31 
nên x= 93 , y= 155 , z= -62

thân mên

long

 đặng hoàng long

ai biet j,glhfmgxnfcvgkul

2 tháng 8 2016

giống tui

28 tháng 6 2017

Ta có: \(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)

Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\left(x+y+z\right)^2=9\)

\(\Leftrightarrow x+y+z=-3\) hoặc \(3\)

Nếu \(x+y+z=-3\) thì \(\hept{\begin{cases}x=\frac{-5}{-3}=\frac{5}{3}\\y=\frac{9}{-3}=-3\\z=\frac{5}{-3}=\frac{-5}{3}\end{cases}}\)

Nếu \(x+y+z=3\) thì: \(\hept{\begin{cases}x=\frac{-5}{3}=-\frac{5}{3}\\y=\frac{9}{3}=3\\z=\frac{5}{3}=\frac{5}{3}\end{cases}}\)

Vậy...

Bài 1: 

Ta có:

\(y-x=25\Rightarrow y=25+x\)

Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)

\(7x=100+4x\)

\(\Rightarrow7x-4x=100\)

\(3x=100\)

\(x=\frac{100}{3}\)

26 tháng 1 2016

2x + \(\frac{1}{7}\) = \(\frac{1}{y}\)

<=> \(\frac{1}{y}\) - 2x = \(\frac{1}{7}\)

<=> \(\frac{1}{y}\) - \(\frac{2xy}{y}\) = \(\frac{1}{7}\)

<=>  \(\frac{1-2xy}{y}\) = \(\frac{1}{7}\)

<=> 7(1-2xy) = y

<=> 7 -14xy  =y

<=> y+14xy   = 7

<=> y(14x+1) =7

vì x,y thuộc Z

nên y(14x+1) = 1.7=7.1=(-1)(-7)=(-7)(-1)

sau đó lập bảng nha bn

29 tháng 12 2015

(x-5)/3=(y+8)/5 

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

(x-5)/3=(y+8)/5=[(x-5)-(y+8)]/(3-5)=(x-5-y-8)/(-2)=[(x-y)-(5+8)]/(-2)=(8-13)/(-2)=(-5)/(-2)=5/2

nên (x-5)/3=5/2 => x-5=5/2*3 =>x=15/2+5=25/2

       (y+8)/5=5/2 =>y+8=5/2*5 =>y=25/2-8=9/2

29 tháng 12 2015

Theo t/c dãy tỉ số = nhau:

\(\frac{x-5}{3}=\frac{y+8}{5}=\frac{x-5-y-8}{3+5}=\frac{x-y-13}{8}=\frac{8-13}{8}=-\frac{5}{8}\)

=> \(\frac{x-5}{3}=-\frac{5}{8}\Rightarrow x-5=-\frac{5}{8}.3=-\frac{15}{8}\Rightarrow x=-\frac{15}{8}+5=\frac{25}{8}\)

=> \(\frac{y+8}{5}=-\frac{5}{8}\Rightarrow y+8=-\frac{5}{8}.5=-\frac{25}{8}\Rightarrow y=-\frac{25}{8}-8=-\frac{89}{8}\)

Vậy x=25/8; y=-89/8.