K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

 Câu trả lời hay nhất:  từ giả thiết thứ nhất dặt x= 3t , y =5t , z = -2t 
thay vào giả thiết thứ 2 ta có 15t - 5t - 6t = 124 <=> t =31 
nên x= 93 , y= 155 , z= -62

thân mên

long

 đặng hoàng long

7 tháng 10 2016

a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10

biến đổi: 
\(\frac{x}{19}=\frac{5x}{95}\)

=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)

(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)

= \(\frac{5x-y-z}{95-5-95}\)

= \(\frac{-10}{-5}=2\)

* \(\frac{x}{19}=2\)=> \(x=19.2=38\)

* \(\frac{y}{5}=2\)=> \(y=2.5=10\)

* \(\frac{z}{95}=2\)=> \(z=95.2=190\)

7 tháng 10 2016

nè Khoa ơi câu b có đề ko zợ?

14 tháng 12 2017

bạn ơi đề thiếu

5 tháng 7 2017

a.

\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{15+5+3}=\frac{10}{23}\) [theo tính chất của dãy tỉ số bằng nhau]

=> x = 10/23 * 15 = 150/23

y = 10/23 * 5 = 50/23

z = 10/23 * 93 = 30/23

b.

\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{2x}{30}=\frac{3y}{15}=\frac{z}{3}=\frac{2x-3y+z}{30-15+3}=\frac{32}{18}=\frac{16}{9}\)[theo tính chất của dãy tỉ số bằng nhau]

=> 2x = 16/9 * 30 = 160/3 => x = 80/3

3y = 16/9 * 15 = 80/3 => y = 80/9

z = 16/9 * 3 = 48/9

c.

\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{x}{15}=\frac{2y}{10}=\frac{3z}{9}=\frac{x+2y-3z}{15+10-9}=\frac{14}{16}=\frac{7}{8}\)[theo tính chất của dãy tỉ số bằng nhau]

=> x = 7/8 * 15 = 105/8

2y = 7/8 * 10 = 70/8 => y = 35/8

3z = 7/8 * 9 = 63/8 => z = 21/8

22 tháng 10 2016

dễ lắm nhưng bây h mình k có thời gian để giải 

22 tháng 10 2016
câu a) x/2=2.y/2.3=3.z/3.4 Áp dụng tính chất của dãy tỉ số bằng nhau x/2=2.y/2.3=3.z/3.4=x+2Y-3Z/2+6-12=-20/-4=5 X/2=5 SUY RA X=10 2.Y/2.3=5 SUY RA Y/3=5 suy ra y=15 3.z/3.4=5 suy ra z/4=5 suy ra z=20 vậy x=10 y=15 z=20
15 tháng 8 2019

Ta có : \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\) => \(\frac{3x}{8}=\frac{3y}{64}=\frac{z}{72}\)

=> \(\frac{x}{\frac{8}{3}}=\frac{y}{\frac{64}{3}}=\frac{z}{72}\)

=> \(\frac{x^2}{\frac{64}{9}}=\frac{y^2}{\frac{4096}{9}}=\frac{z^2}{5184}\)

=> \(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}=\frac{2x^2+2y^2-z^2}{\frac{128}{9}+\frac{8192}{9}-5184}=\frac{1}{-\frac{38336}{9}}=-\frac{9}{38336}\)

=> \(\hept{\begin{cases}\frac{2x^2}{\frac{128}{9}}=-\frac{9}{38336}\\\frac{2y^2}{\frac{8192}{9}}=-\frac{9}{38336}\\\frac{z^2}{5184}=-\frac{9}{38336}\end{cases}\Leftrightarrow}x,y,z\in\varnothing\)

Vậy không có số nào thỏa mãn

Bài 1: 

Ta có:

\(y-x=25\Rightarrow y=25+x\)

Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)

\(7x=100+4x\)

\(\Rightarrow7x-4x=100\)

\(3x=100\)

\(x=\frac{100}{3}\)

30 tháng 12 2015

a)(2x-5)^2006>/0( mọi x)

(y^2-1)^2008>/0(mọi x)

(x-z)^2010>/0(mọi x)

Để (2x-5)^2006+(y^2-1)^2008+(x-z)^2010=0

=>2x-5=y^2-1=x-z=0

=>x=2,5;y=1;z=2,5

30 tháng 12 2015

cảm ơn 

 

4 tháng 2 2018

\(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1979}\right|+\left|z-2007\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1979}\right|=0\\\left|z-2007\right|=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1979}=0\\z-2007=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-1890}{1979}\\z=2007\end{cases}}\)

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

bạn ơi ko phải đề mình bạn