Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
=> (y + 2).x + (4 - y2) = 3
=> (y + 2).x - (y + 2)(y - 2) = 3
=> (y + 2)(x - y + 2) = 3
=> y + 2 \(\in\)Ư(3) = {-3;-1;1;3}
+) y + 2 = -3 => y = -5 và x - y + 2 = -1 => x = -3 + y = -8
+) y + 2 = -1 => y = -3 và x - y + 2 = -3 => x = -5 + y = -8
+) y + 2 = 1 => y = -1 ; x = 0
+) y + 2 = 3 => y = 1; x = 0
Vậy...