Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)
b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)
Ta có:
\(x^2y^3+3x^2y^3+5x^2y^3+...+\left(2k-1\right)x^2y^3=100x^2y^3\)
\(\Rightarrow\left[1+3+5+...+\left(2k-1\right)\right]x^2y^3=100x^2y^3\)
\(\Rightarrow1+3+5+...+\left(2k-1\right)=100\)
Từ 1 đến 2k-1 có số lượng số là: (2k-1-1):2+1=(2k-2):2+1=k-1+1=k
Áp dụng công thức tính tổng dãy số cách đều ta có:
\(\Rightarrow\dfrac{\left(2k-1+1\right).k}{2}=100\)
\(\Rightarrow\dfrac{2k^2}{2}=100\)
\(\Rightarrow k^2=100\Rightarrow k=\pm10\)( chọn vì thoả mãn điều kiện \(k\in N\))
Vậy \(k=\pm10\)
Chúc bạn học tốt!!!
\(x^2y^3+3x^2y^3+5x^2y^3+...+\left(2k-1\right)x^2y^3=100x^2y^3\)
\(\Leftrightarrow1+3+5+...+\left(2k-1\right)=100\)
Ta có: \(100=\dfrac{\left(1+2k-1\right).\left(\dfrac{2k-1-1}{2}+1\right)}{2}\)
\(\Leftrightarrow200=2k.k\)
\(\Leftrightarrow k=\pm10\)
Mà k > 0 => \(k=10\)
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
A: Đặt P(x)=0
=>3x-5=0
hay x=5/3
b: Đặt Q(x)=0
=>-2x+6=0
hay x=3
c: Đặt M(y)=0
=>1/2y-3=0
hay y=6
d: Đặt A(x)=0
=>12-3/4x=0
=>3/4x=12
hay x=16
Bài 7
a)cho P(x) = 0
\(=>3x-5=0\Leftrightarrow3x=5\Leftrightarrow x=\dfrac{5}{3}\)
b) cho Q(x) = 0
\(=>6-2x=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
c)cho M(y) = 0
\(=>\dfrac{1}{2}y-3=0\Leftrightarrow\cdot\dfrac{1}{2}y=3\Leftrightarrow y=6\)
d)cho A(x) = 0
\(=>\dfrac{-3}{4}x+12=0=>-\dfrac{3}{4}x=-12=>x=16\)
e)cho B(y) = 0
=>\(2y+15=0=>2y=-15=>y=-\dfrac{15}{2}\)
f) cho C(t) = 0
=>\(2-5t=0=>5t=2=>t=\dfrac{2}{5}\)
\(2.\)
\(2x^3-6x\)
\(\Leftrightarrow2x^3-6x=0\)
\(\Leftrightarrow2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{3}\end{cases}}\)