K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

phân tích đa thức thành nhân tử đi

20 tháng 6 2019

1a) A = \(x^2-4x+2023=\left(x-2\right)^2+2019\)

Ta luôn có: (x - 2)2 \(\ge\)\(\forall\)x

 => (x - 2)2 + 2019 \(\ge\)2019 \(\forall\)x

Hay A \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi : (x - 2)2 = 0 => x - 2 = 0 => x = 2

Nên Amin = 2019 khi x = 2

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

26 tháng 12 2021

tách nhỏ câu hỏi ra bạn

26 tháng 12 2021

\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)

\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)

\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)

\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

 

22 tháng 7 2019

\(A=x^2+3x+7\)

\(=x^2+2.1,5x+2,25+4,75\)

\(=\left(x+1,5\right)^2+4,75\ge4,75\)

Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)

22 tháng 7 2019

\(B=2x^2-8x\)

\(=2\left(x^2-4x\right)\)

\(=2\left(x^2-4x+4-4\right)\)

\(=2\left[\left(x-2\right)^2-4\right]\)

\(=2\left(x-2\right)^2-8\ge-8\)

Vậy \(B_{min}=-8\Leftrightarrow x=2\)

26 tháng 12 2021

a: \(=\dfrac{x-z}{2}\)

b: \(=\dfrac{3x}{4y^3}\)

1. tính a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\) b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\) c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\) d) \(\left(\dfrac{1}{2}x-2y\right)^3\) e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\) f) \(27x^3-8y^3\) g) 4(2x - 3y) - 4 - (2x-3y)2 2. rút gọn a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\) b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\) c)...
Đọc tiếp

1. tính

a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)

b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)

c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)

d) \(\left(\dfrac{1}{2}x-2y\right)^3\)

e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)

f) \(27x^3-8y^3\)

g) 4(2x - 3y) - 4 - (2x-3y)2

2. rút gọn

a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)

b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)

c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)

d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)

3. c/m các biểu thức sau ko phụ thuộc vào biến x,y

a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)

b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)

c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)

d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)

4. Tìm x

a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)

b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

c) \(49x^2+14x+1=0\)

d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

5. c/m biểu thức luôn dương:

a) \(A=16x^2+8x+3\)

b) \(B=y^2-5y+8\)

c) C= \(2x^2-2x+2\)

d) \(D=9x^2-6x+25y^2+10y+4\)

6. Tìm GTLN và GTNN của các biểu thức sau

a) \(M=x^2+6x-1\)

b) \(N=10y-5y^2-3\)

7. thu gọn

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)

b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

2
9 tháng 9 2017

Bạn đăng từ từ thôi!

Dài quá

18 tháng 2 2020

Bài 2 :

a) \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^2\right)\)

\(=10x^5y+5x^4y^2-15x^2y^3-16x^4y^2-8x^3y^3+24xy^4+2x^3y^3+x^2y^4-3y^5\)

\(=10x^5y-11x^4y^2-6x^3y^3+x^2y^4-15x^2y^3+24xy^4-3y^5\)