K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

a) \(A=\left(x^2-2.2x+4\right)-3\)

\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)

Vậy minA = -3 khi x = 2

b) \(B=4x^2+4x+11\)

\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)

\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)

Vậy min B = 10 khi x = -1/2

c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)

Vậy MinC= -36 khi x =0 và x = -5

d) \(D=2x^2+y^2-2xy+2x-4y+9\)

\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)

\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)

\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy min D = 4 khi x = 1 và y = 3

*Tìm giá trị nhỏ nhất

a) \(A=x^2-4x+1\)

Ta có: \(A=x^2-4x+1\)

\(=x^2-4x+4-5=\left(x-2\right)^2-5\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2-5\ge-5\forall x\)

Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-4x+1\) là -5 khi x=2

b) \(B=4x^2+4x+11\)

Ta có: \(B=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1+10=\left(2x+1\right)^2+10\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2+10\ge10\forall x\)

Dấu '=' xảy ra khi \(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(B=4x^2+4x+11\) là 10 khi \(x=\frac{-1}{2}\)

*Tìm giá trị lớn nhất

e) \(E=5-8x-x^2\)

Ta có: \(E=5-8x-x^2\)

\(=-\left(-5+8x+x^2\right)=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\)

Ta có: \(\left(x+4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x+4\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi \(\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy: Giá trị lớn nhất của biểu thức \(E=5-8x-x^2\) là 21 khi x=-4

f) \(F=4x-x^2+1\)

Ta có: \(F=4x-x^2+1\)

\(=-\left(-4x+x^2-1\right)\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị lớn nhất của biểu thức \(F=4x-x^2+1\) là 5 khi x=2

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

NV
26 tháng 7 2021

1. Đề bài sai, các biểu thức này chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất

2.

\(A=\left(2x\right)^3-3^3-\left(8x^3+2\right)\)

\(=8x^3-27-8x^3-2\)

\(=-29\) 

\(B=x^3+9x^2+27x+27-\left(x^3+9x^2+27x+243\right)\)

\(=27-243=-216\)

26 tháng 7 2021

 sửa đề lại thành tìm Max nhé1, vì mấy ý này ko có min

\(1,=>D=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)

\(=-[\left(x-2\right)^2-7]=-\left(x-2\right)^2+7\le7\)

dấu"=" xảy ra<=>x=2

2, \(E=-2\left(x^2-x+\dfrac{5}{2}\right)=-2[x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}]\)

\(=-2[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}]\le-\dfrac{9}{2}\) dấu"=" xảy ra<=>x=1/2

3, \(F=-\left(x^2+4x-20\right)=-\left(x^2+2.2x+4-24\right)\)

\(=-[\left(x+2\right)^2-24]\le24\) dấu"=" xảy ra<=>x=-2

18 tháng 2 2021

3. Tìm giá trị nhỏ nhất của các biểu thứca. A = 4x2  4x 11b. B = (x - 1) (x 2) (x 3) (x 6)c. C = x2 - 2x y2 - 4y 7Ai nha... - Hoc24

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)