K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2018

Nguyễn Khánh Linh

bn có thể tham khảo bài làm tương tự tại : 

Câu hỏi của nguyễn văn thành - Toán lớp 6 - Học toán với OnlineMath

(bấm vào dòng chữ màu xanh)

chúc các bn hok tốt !

20 tháng 2 2018

Ta có : a chia 6 dư 2 => a - 2 chia hết cho 6 => a - 2 + 12 chia hết cho 6 => a + 10 chia hết cho 6

a chia 7 dư 4 => a - 4 chia hết cho 7 => a - 4 + 14 chia hết cho 7 => a + 10 chia hết cho 7

=> a + 10 chia hết cho 6 và 7

=. a + 10 thuộc BC ( 6 ; 7 )

Mà BCNN ( 6 ; 7 ) = 42

=> a + 10 thuộc B ( 42 ) = { 0 ; 42 ; ... }

=> a + 10 chia 42 dư 42

=> a chia 42 dư 32

Vậy số a chia cho 42 dư 32

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học...
Đọc tiếp

Bài 1: Tìm số tự nhiên nhỏ nhất khi chia cho 6, 7, 9 được số dư theo thứ tự 2, 3,5.

Bài 2: Số học sinh khối 6 của một trường trong khoảng từ 200 và 400, khi xếp hàng 12, 15, 18 đều thừa 5 học sinh. Tính số học sinh đó.

Bài 3: Tổng số học sinh khối 6 của một trường có khoảng từ 235 đến 250 em học sinh, khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4, chia cho 6 dư 5, chia cho 10 dư 9. Tìm số học sinh của khối 6.

Bài 4: Một số tự nhiên chia cho 7 thì dư 5, chia cho 13 thì dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?

Bài 5: Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6. Tìm số dư khi chia a cho 63.

Bài 6: Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho n chia cho 15 và 35 có số dư lần lượt là 9 và 29.

Bài 7: Tìm số tự nhiên nhỏ nhất có ba chữ số chia cho 18; 30; 45 có số dư lần lượt là 8; 20; 35.

0
29 tháng 7 2019

Đáp án cần chọn là: D

Vì a chia cho 7 dư 4⇒(a+3)⋮7

a chia cho 9 dư 6 ⇒(a+3)⋮9

Do đó (a+3)∈BC(7,9) mà BCNN(7,9)=63.

Do đó (a+3)⋮63⇒a chia cho 63 dư 60.

8 tháng 12 2021

câu D bạn nhé

3 tháng 9 2018

nhanh lên nha các bn

29 tháng 10 2020

ò mà nó khó qué ><
 

24 tháng 7 2015

Ta có: A:7(dư 4)=>A-4 chia hết cho 7=>A-4+7=A+3 chia hết cho 7

           A:9(dư 6)=>A-6 chia hết cho 9=>A-6+9=A+3 chia hết cho 9

=>A+3 chia hết cho 7 và 9.

mà (7,9)=1

=>A+3 chia hết cho 9.7

=>A+3 chia hết cho 63

=>A+3-63 chia hết cho 63

=>A-60 chia hết cho 63

=>A:63(dư 60)

Vậy A:63(dư 60)

7 tháng 11 2016

63{du60}

chac vay k minh nha!