Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\dfrac{-5}{18}=\dfrac{-20}{72};\dfrac{7}{-24}=\dfrac{-21}{72}.\)
\(\dfrac{-15}{-40}=\dfrac{3}{8}=\dfrac{9}{24};\dfrac{24}{-72}=\dfrac{-1}{3}=\dfrac{-8}{24}.\)
Bài 3:
a) \(\dfrac{2}{3}h=\dfrac{8}{12}h;\dfrac{3}{4}h=\dfrac{9}{12}h.\Rightarrow\dfrac{2}{3}h< \dfrac{3}{4}h.\)
b) \(\dfrac{4}{5}km/h=\dfrac{8}{10}km/h;\dfrac{9}{10}km/h.\Rightarrow\dfrac{4}{5}km/h< \dfrac{9}{10}km/h.\)
a, Ta có : \(8>7\)
\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)
b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)
Mà \(2003^{15}>2000^{15}=2^{60}.2^{45}\)
Thấy : \(45>40\)
\(\Rightarrow2000^{15}>200^{20}\)
\(\Rightarrow2003^{15}>199^{20}\)
c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
a) Ta có: \(2^{16}=2^{13}\cdot8\)
mà \(7< 8\)
nên \(7\cdot2^{13}< 2^{16}\)
b) \(199^{20}=1568239201^5\)
\(2003^{15}=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
mà \(202^3>303^2\)
nên \(202^{303}>303^{202}\)
a) Có thể xảy ra 3 trường hợp :
- Tường hợp 1 : Hai số tự nhiên có thể bằng nhau
-Trường hợp 2 : Số tự nhiên của An có thể lớn hơn
-Trường hợp 3 : Số tự nhiên của Bình có thể lớn hơn
b) Giống như phần a)
# Chúc bạn hok tốt #
25cm = \(\dfrac{1}{4}m\)
\(\dfrac{3}{4}:\dfrac{1}{4}=3\)
b.30p=\(\dfrac{1}{2}\)giờ
\(\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)
c.0,4kg=400g
\(\dfrac{400}{340}=\dfrac{20}{17}\)
d.\(\dfrac{2}{5}:\dfrac{3}{4}=\dfrac{8}{15}\)
Dinh Thuy Tien
2711 = ( 33)11 = 333
818 = ( 34)8 = 332
Dễ thấy 333 > 332 nên => 2711 > 818
Bạn làm tương tự tiếp nha!
Lộn, lộn,
\(3^{450}=\left(3^3\right)^{150}=27^{150}\)
Vì \(27^{150}>25^{150}\)nên \(A>B\)
1) Ta có: \(3^{450}=\left(3^3\right)^{150}=9^{150}\).
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Ví \(9^{150}< 25^{150}\)nên \(3^{450}< 5^{300}\)
\(\Rightarrow A< B\)
\(3^{40}\)>\(2^{30}\)
17*\(2^{15}\)>\(3.2^{18}\)
\(199^{20}\)<\(2003^{15}\)