K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

a) \(\cdot\left(m+n\right)^2-\left(m-n\right)^2+\left(m+n\right)\left(m-n\right)\)

\(=\left(m+n+m-n\right)\left(m+n-m+n\right)+\left(m+n\right)\left(m-n\right)\)

\(=\left(2m\cdot2n\right)+m^2-n^2\)

\(=4mn+m^2-n^2\)

b) \(\left(a+b\right)^2-\left(a-b\right)^2-2a^3\)

\(=\left(a+b+a-b\right)\left(a+b-a+b\right)-2a^3\)

\(=2ab-2a^3\)

c) \(\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(4x^2-1\right)\)

\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(2x+1+2x-1\right)^2\)

\(=\left(4x\right)^2=16x^2\)

d) \(\left(a+b+c\right)^2-2\left(a+b+c\right)\left(b+c\right)+\left(b+c\right)^2\)

\(=\left(a+b+c-b-c\right)^2=a^2\)

14 tháng 7 2017

xin lỗi mk ghi sai đề ở bài :d) (a+b+c)^2-2(a+b+c)(b+c)+(b+c)^2

18 tháng 7 2017

a) \(\left(m+n\right)^2-\left(m-n\right)^2+\left(m+n\right)\left(m-n\right)\)

\(=\left(m+n+m-n\right)\left(m+n-m+n\right)+m^2-n^2\)

\(=m^2-n^2+4mn\)

b) \(\left(a+b\right)^3+\left(a-b\right)^3-2a^3\)

\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]-2a^3\)

\(=2b\left[a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right]-2a^3\)

\(=2b\left(a^2+3b^2\right)-2a^3\)

\(=2a^2b+6b^3-2a^3.\)

Tương tự áp dụng các HĐT.

18 tháng 7 2017

a) \(\left(m+n\right)^2-\left(m-n\right)^2=\left[\left(m+n\right)-\left(m-n\right)\right]\left[\left(m+n\right)+\left(m-n\right)\right]=\left(2n\right)\left(2m\right)=4mn\)\(\left(m+n\right)\left(m-n\right)=m^2-n^2\)

A=\(4mn+m^2-n^2\) tối giản rồi

b)

\(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]^3-3\left(a+b\right)\left(a-b\right)\left[\left(a+b\right)+\left(a-b\right)\right]=8a^3-3.2a.\left(a^2-b^2\right)\)B=\(8a^3-3.2a.\left(a^2-b^2\right)-2a^3=6a\left[a^2-\left(a^2-b^2\right)\right]=6ab^2\)

* Dạng toán về phép chia đa thức Bài 9.Làm phép chia: a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1) Bài 10: Làm tính chia 1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5) Bài 11: 1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5 2. Tìm n để đa thức...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9.Làm phép chia:

a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)

Bài 10: Làm tính chia

1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)

Bài 11:

1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5

2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x –x2+ 3 2. B = –x2+ 6x –11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x

Chương II

* Dạng toán rút gọn phân thức

Bài 1.Rút gọn phân thức:a. 3x(1 - x)/2(x-1) b.6x^2y^2/8xy^5 c3(x-y)(x-z)^2/6(x-y)(x-z)

Bài 2: Rút gọn các phân thức sau:a)x^2-16/4x-x^2(x khác 0,x khác 4) b)x^2+4x+3/2x+6(x khác -3) c) 15x(x+y)^3/5y(x+y)^2(y+(x+y) khác 0). d)5(x-y)-3(y-x)/10(10(x-y)(x khác y) 2x+2y+5x+5y/2x+2y-5x-5y(x khác -y) f)15x(x+y)^3/5y(x+y)^2(x khác y,y khác 0)

Bài 3: Rút gọn, rồi tính giá trị các phân thức sau:

a) A=(2x^2+2x)(x-2)^2/(x^3-4x)(x+1) với x=1/2 b)B=x^3-x^2y+xy2/x^3+y^3 với x=-5,y=10

Bài 4;Rút gọn các phân thức sau:

a) (a+b)^/a+b+c b) a^2+b^2-c^2+2ab/a^2-b^2+c^2+2ac c) 2x^3-7x^2-12x+45/3x^3-19x^2+33x-9

2
31 tháng 12 2017

Bài 12:

1) A = x2 - 6x + 11

= (x2 - 6x + 9) + 2

= (x - 3)2 + 2

Ta có: (x - 3)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3

Do đó: (x - 3)2 + 2 ≥ 2

Hay A ≥ 2

Dấu ''='' xảy ra khi x = 3

Vậy Min A = 2 tại x = 3

2) B = x2 - 20x + 101

= (x2 - 20x + 100) + 1

= (x - 10)2 + 1

Ta có: (x - 10)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10

Do đó: (x - 10)2 + 1 ≥ 1

Hay B ≥ 1

Dấu ''='' xảy ra khi x = 10

Vậy Min B = 1 tại x = 10

27 tháng 11 2019

Sao bạn KO tách ra cho dễ nhìn

28 tháng 12 2017

a) \(\dfrac{2x-6}{x^2-x-6}\)

\(=\dfrac{2\left(x-3\right)}{x^2-3x+2x-6}\)

\(=\dfrac{2\left(x-3\right)}{x\left(x-3\right)+2\left(x-3\right)}\)

\(=\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}\)

\(=\dfrac{2}{x+2}\)

b) \(\dfrac{6x^2-x-2}{4x^2-1}\)

\(=\dfrac{6x^2+3x-4x-2}{\left(2x\right)^2-1^2}\)

\(=\dfrac{3x\left(2x+1\right)-2\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{\left(2x+1\right)\left(3x-2\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{3x-2}{2x-1}\)

28 tháng 12 2017

\(c,\dfrac{x^3-x^2+3x-3}{x^3+2x^2+3x+6}\)

\(=\dfrac{x^2\left(x-1\right)+3\left(x-1\right)}{x^2\left(x+2\right)+3\left(x+2\right)}\)

\(=\dfrac{\left(x-1\right)\left(x^2+3\right)}{\left(x+2\right)\left(x^2+3\right)}=\dfrac{x-1}{x+2}\)

d,Sửa đề :

\(\dfrac{a^2-b^2+c^2+2ac}{a^2+b^2-c^2+2ab}\)

\(=\dfrac{\left(a^2+2ac+c^2\right)-b^2}{\left(a^2+2ab+b^2\right)-c^2}\)

\(=\dfrac{\left(a+c\right)^2-b^2}{\left(a+b\right)^2-c^2}\)

\(=\dfrac{\left(a-b+c\right)\left(a+b+c\right)}{\left(a+b-c\right)\left(a+b+c\right)}\)

\(=\dfrac{a-b+c}{a+b-c}\)

e,g Đề ko rõ

23 tháng 8 2015

mk chỉ đưa ra kết quả thui nghen chứ lm thì dài lm, bn coi kết quả r đối chiếu bài lm của bn ấy

a/ = x3 - 16x2 + 25x

b/ = -2ab + a2 + 2a

c/ = 2a2

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên 2. Cho x + y + z = xy + yz + zx = 0 Tính giá trị của biểu thức B = x100 + y101 + z102 3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0 Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5 4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1 5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR trong ba số a, b, c...
Đọc tiếp

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên
2. Cho x + y + z = xy + yz + zx = 0
Tính giá trị của biểu thức B = x100 + y101 + z102
3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0
Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5
4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1
5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR trong ba số a, b, c có ít nhất hai số bằng nhau
6. Cho ba số a, b, c khác 0 thỏa mãn đẳng thức \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
7. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
8. CMR:
a) a2 ( a + 1) + 2a ( a + 1) chia hết cho 6 với a thuộc Z
b) x2 + 2x + 2 > 0 với x thuộc Z
c) -x2 + 4x - 5 < 0 với x thuộc Z
9. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
10. Tìm các số nguyên x, y thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
11. Tìm giá trị nguyên của x, y trong đẳng thức: 2x3 + xy = 7
12. Tìm GTNN của biểu thức P =x4 + 2x3 + 3x2 + 2x + 1

0