Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^n\left(6x^{n-3}+1\right)-2x^n\left(9x^{n-3}-1\right)=18x^{n+n-3}+3x^n-18x^{n+n-3}+2x^n=5x^n\)
\(2x\left(2x-1\right)^2-3x\left(x-3\right)\left(x+3\right)-4x\left(x+1\right)^2=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2-2x=x\left(x^2-16x-x\right)\)
ChươngII *Dạng toán rútg gọn phân thức
Bài 1.Rút gọn phân thức
a. \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}=\dfrac{-3x\left(x-1\right)}{2\left(x-1\right)}=-\dfrac{3x}{2}\)
b.\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x.2xy^2}{4y^3.2xy^2}=\dfrac{3x}{4y^3}\)
c.\(\dfrac{23\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\dfrac{23\left(x-z\right)}{6}\)
Bài 2 rút gọn các phân thức sau:
a.\(\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\dfrac{x+4}{x}\)(x khác 0,x khác 4)
b.\(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)
( x \(\ne-3\) )
c.\(\dfrac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+y\right)}{y}\) (y+(x+y) khác 0)
d. \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{4}{5}\)
(x khác y)
e.\(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)
(x khác -y)
f.\(\dfrac{x^2-xy}{3xy-3y^2}=\dfrac{x\left(x-y\right)}{3y\left(x-y\right)}=\dfrac{x}{3y}\)(x khác y,y khác 0)
g.\(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}=\dfrac{2a\left(x^2-2x+1\right)}{-5b\left(x^2-1\right)}=\dfrac{2a\left(x-1\right)^2}{-5b\left(x-1\right)\left(x+1\right)}=\dfrac{2a\left(x-1\right)}{-5b\left(x+1\right)}\)
\ (b khác 0,x khác +-1)
h. \(\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4x}{5x^2}\)
(x khác 0,x khác y)
i.\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)
(x+y+z khác 0)
k.\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
(x khác 0,x khác +-y)
Bài 12:
1) A = x2 - 6x + 11
= (x2 - 6x + 9) + 2
= (x - 3)2 + 2
Ta có: (x - 3)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3
Do đó: (x - 3)2 + 2 ≥ 2
Hay A ≥ 2
Dấu ''='' xảy ra khi x = 3
Vậy Min A = 2 tại x = 3
2) B = x2 - 20x + 101
= (x2 - 20x + 100) + 1
= (x - 10)2 + 1
Ta có: (x - 10)2 ≥ 0 ∀ x
Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10
Do đó: (x - 10)2 + 1 ≥ 1
Hay B ≥ 1
Dấu ''='' xảy ra khi x = 10
Vậy Min B = 1 tại x = 10
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(1,\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)
\(2,=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)
pt thành nhân tử là ra
a) \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)
\(=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)
b) \(\dfrac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\dfrac{2\left(x-2\right)}{x+2}\)
c) \(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}=\dfrac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{x}{x+y}\)
d) \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\)
\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\)
\(=\dfrac{\left(a+b-c\right)\left(a+b+c\right)}{\left(a-b+c\right)\left(a+b+c\right)}\)
\(=\dfrac{a+b-c}{a-b+c}\)
e) \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\dfrac{2x^2-x-15}{3x^2-10x+3}\)
\(=\dfrac{\left(x-3\right)\left(2x+5\right)}{\left(x-3\right)\left(3x-1\right)}\)
\(=\dfrac{2x+5}{3x-1}\)
a) \(\dfrac{2x-6}{x^2-x-6}\)
\(=\dfrac{2\left(x-3\right)}{x^2-3x+2x-6}\)
\(=\dfrac{2\left(x-3\right)}{x\left(x-3\right)+2\left(x-3\right)}\)
\(=\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}\)
\(=\dfrac{2}{x+2}\)
b) \(\dfrac{6x^2-x-2}{4x^2-1}\)
\(=\dfrac{6x^2+3x-4x-2}{\left(2x\right)^2-1^2}\)
\(=\dfrac{3x\left(2x+1\right)-2\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=\dfrac{\left(2x+1\right)\left(3x-2\right)}{\left(2x-1\right)\left(2x+1\right)}\)
\(=\dfrac{3x-2}{2x-1}\)
\(c,\dfrac{x^3-x^2+3x-3}{x^3+2x^2+3x+6}\)
\(=\dfrac{x^2\left(x-1\right)+3\left(x-1\right)}{x^2\left(x+2\right)+3\left(x+2\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^2+3\right)}{\left(x+2\right)\left(x^2+3\right)}=\dfrac{x-1}{x+2}\)
d,Sửa đề :
\(\dfrac{a^2-b^2+c^2+2ac}{a^2+b^2-c^2+2ab}\)
\(=\dfrac{\left(a^2+2ac+c^2\right)-b^2}{\left(a^2+2ab+b^2\right)-c^2}\)
\(=\dfrac{\left(a+c\right)^2-b^2}{\left(a+b\right)^2-c^2}\)
\(=\dfrac{\left(a-b+c\right)\left(a+b+c\right)}{\left(a+b-c\right)\left(a+b+c\right)}\)
\(=\dfrac{a-b+c}{a+b-c}\)
e,g Đề ko rõ