Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)
a) \(|2x-2|+|3-3x|=125\left(1\right)\)
Ta có:
\(2x-2=0\Leftrightarrow x=1\)
\(3-3x=0\Leftrightarrow x=1\)
Lập bảng xét dấu :
Với \(x< 1\Rightarrow\hept{\begin{cases}2x-2< 0\\3-3x>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-2|=2-2x\\|3-3x|=3-3x\end{cases}}\left(2\right)}\)
Thay (2) vào (1) ta được :
\(\left(2-2x\right)+\left(3-3x\right)=125\)
\(2-2x+3-3x=125\)
\(-5x+5=125\)
\(-5x=120\)
\(x=-24\)( chọn )
Với \(x\ge1\Rightarrow\hept{\begin{cases}2x-2>0\\3-3x< 0\end{cases}}\Rightarrow\hept{\begin{cases}|2x-2|=2x-2\\|3-3x|=3x-3\end{cases}\left(3\right)}\)
Thay (3) vào (1) ta được :
\(\left(2x-2\right)+\left(3x-3\right)=125\)
\(2x-2+3x-3=125\)
\(5x-5=125\)
\(5x=130\)
\(x=26\)9 (CHọn )
Vậy \(x\in\left\{-24;26\right\}\)
b) \(|x-2018|+|x-2019|=1\left(1\right)\)
Ta có: \(x-2018=0\Leftrightarrow x=2018\)
\(x-2019=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
+) Với \(x< 2018\Rightarrow\hept{\begin{cases}x-2018< 0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=2018-x\\|x-2019|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(2018-x\right)+\left(2019-x\right)=1\)
\(2018-x+2019-x=1\)
\(4037-2x=1\)
\(2x=4036\)
\(x=2018\)( Loại )
+) Với \(2018\le x< 2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(x-2018\right)+\left(2019-x\right)=1\)
\(x-2018+2019-x=1\)
\(1=1\)( luôn đúng )
+) Với \(x\ge2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019>0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=x-2019\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(x-2018\right)+\left(x-2019\right)=1\)
\(2x-4037=1\)
\(x=2019\)( Chọn )
Vậy \(2018\le x\le2019\)
1. Rút gọn biểu thức :
\(M=4.\left(2-3x\right)-\left|2x-3\right|\) (*)
- Xét 2 TH :
+ Trường hợp 1 : \(\left|2x-3\right|=\left(2x-3\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(2x-3\right)\)
\(\Rightarrow M=8-12x-2x+3\)
\(\Rightarrow M=-14x+11\)
+ Trường hợp 2 : \(\left|2x-3\right|=\left(3-2x\right)\) thì (*) trở thành :
\(M=4.\left(2-3x\right)-\left(3-2x\right)\)
\(\Rightarrow M=8-12x-3+2x\)
\(\Rightarrow M=-10x+5\)
\(a)2xy+4y-x=5\)
\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)
\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)
\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)
\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Xét từng trường hợp :
- \(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
- \(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
- \(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)
Vậy
\(2x+y=xy-3\)
\(\Leftrightarrow xy-2x-y=3\)
\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)
\(\Leftrightarrow x\left(y-2\right)-y+2=5\)
\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)
\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)
\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp như câu trên và kết luận
\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)
\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\)
\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\)
\(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
\(\left(x+1\right)\left(x+3\right)=\left(0,5x+2\right)\left(2x+1\right)\)
\(x^2+4x+3=x^2+4,5x+2\)
\(x^2-x^2+4x-4,5x-2+3=0\)
\(1-0,5x=0\)
\(x=2\)
1. Giải phương trình: |2x-3|+|x-2|=7
|2x-3|+|x-2|=7
\(\Rightarrow\left[{}\begin{matrix}2x-3+x-2=7\\-2x+3-x+2=7\\-2x+3+x-2=7\\2x-3-x+2=7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=7\\-3x+5=7\\-x+1=7\\x-1=7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\\x=-8\\x=8\end{matrix}\right.\)