Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1. Giải các phương trình sau bằng công thức nghiệm hoặc (công thức nghiện thu gọn).
1) x2 - 11x + 38 = 0 ;
2) 6x2 + 71x + 175 = 0 ;
3) 5x2 - 6x + 27 =0 ;
4) - 30x2 + 30x - 7,5 = 0 ;
5) 4x2 - 16x + 17 = 0 ;
6) x2 + 4x - 12 = 0 ;
a) Đặt \(x^2=a\left(a\ge0\right)\)
Ta có: \(2x^4-7x^2+4=0\)
Suy ra: \(2a^2-7a+4=0\)
\(\Delta=49-4\cdot2\cdot4=49-32=17\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{7-\sqrt{17}}{4}\left(nhận\right)\\a_2=\dfrac{-7+\sqrt{17}}{4}\left(loại\right)\end{matrix}\right.\)
Suy ra: \(x^2=\dfrac{7-\sqrt{17}}{4}\)
\(\Leftrightarrow x=\pm\dfrac{\sqrt{7-\sqrt{17}}}{2}\)
Vậy: \(S=\left\{\dfrac{\sqrt{7-\sqrt{17}}}{2};-\dfrac{\sqrt{7-\sqrt{17}}}{2}\right\}\)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
Bài 5:
a. 1 - 2y + y2
= (1 - y)2
b. (x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c. 1 - 4x2
= 12 - (2x)2
= (1 - 2x)(1 + 2x)
d. 8 - 27x3
= 23 - (3x)3
= (2 - 3x)(4 + 6x + 9x2)
e. (đề hơi khó hiểu ''x3'' !?)
g. x3 + 8y3
= (x + 2y)(x2 - 2xy + y2)
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
`a)x^2>4`
`<=>sqrtx^2>sqrt4`
`<=>|x|>2`
`<=>` \(\left[ \begin{array}{l}x>2\\x<-2\end{array} \right.\)
`b)x^2<9`
`<=>\sqrtx^2<sqrt9`
`<=>|x|<3`
`<=>-3<x<3`
`c)(x-1)^2>=4`
`<=>\sqrt{(x-1)^2}>=sqrt4`
`<=>|x-1|>=2`
`<=>` \(\left[ \begin{array}{l}x-1 \ge 2\\x-1 \le -2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x \ge 3\\x \le -1\end{array} \right.\)
`d)(1-2x)^2<=0,09`
`<=>\sqrt{(1-2x)^2}<=sqrt{0,09}`
`<=>|2x-1|<=0,3`
`<=>-0,3<=2x-1<=0,3`
`<=>0,7<=2x<=1,3`
`<=>0,35<=x<=0,65`
`e)x^2+6x-7>0`
`<=>x^2-x+7x-7>0`
`<=>x(x-1)+7(x-1)>0`
`<=>(x-1)(x+7)>0`
TH1:
\(\left[ \begin{array}{l}x-1>0\\x+7>0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x>1\\x>-7\end{array} \right.\)
`<=>x>1`
TH2"
\(\left[ \begin{array}{l}x-1<0\\x+7<0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x<1\\x<-7\end{array} \right.\)
`<=>x<-7`
`f)x^2-x<2`
`<=>x^2-x-2<0`
`<=>x^2-2x+x-2<0`
`<=>x(x-2)+x-2<0`
`<=>(x-2)(x+1)<0`
`<=>` \(\begin{cases}x-2<0\\x+1>0\\\end{cases}\)
`<=>` \(\begin{cases}x<2\\x>-1\\\end{cases}\)
`<=>-1<x<2`
a) x2 > 4
<=> \(\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)
b) \(x^2< 9\)
<=> \(-3< x< 3\)
c) \(\left(x-1\right)^2\ge4\)
<=> \(\left[{}\begin{matrix}x-1\ge2< =>x\ge3\\x-1\le-2< =>x\le-1\end{matrix}\right.\)
d) \(\left(1-2x\right)^2\le0,09\)
<=> \(-0,3\le1-2x\le0,3\)
<=> \(1,3\ge2x\ge0,7\)
<=> \(0,65\ge x\ge0,35\)
e) \(x^2+6x-7>0\)
<=> \(\left(x+7\right)\left(x-1\right)>0\)
<=> \(\left[{}\begin{matrix}x-1>0< =>x>1\\x+7< 0< =>x< -7\end{matrix}\right.\)
f) \(x^2-x< 2\)
<=> \(x^2-x-2< 0\)
<=> \(\left(x-2\right)\left(x+1\right)< 0\)
<=> \(\left\{{}\begin{matrix}x+1>0< =>x>-1\\x-2< 0< =>x< 2\end{matrix}\right.\)
<=> -1 < x < 2
g) \(4x^2-12x\le\dfrac{-135}{16}\)
<=> \(64x^2-192x+135\le0\)
<=> (8x - 15)(8x - 9) \(\le0\)
<=> \(\left\{{}\begin{matrix}8x-15\le0< =>x\le\dfrac{15}{8}\\8x-9\ge0< =>x\ge\dfrac{9}{8}\end{matrix}\right.\)
<=> \(\dfrac{9}{8}\le x\le\dfrac{15}{8}\)