Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ
Gọi mức sản xuất mỗi ngày là x
=>Thời gian dự định là 120/x
Theo đề, ta có: \(\dfrac{120}{x}-\dfrac{120}{x+10}=1\)
=>120x+1200-120x=x^2+10x
=>x^2+10x-1200=0
=>x=30
=>Thời gian dự định là 4 ngày
Gọi x là số giờ làm khẩu trang
Gọi y là số khẩu trang làm trong 1 giờ \(\left(ĐK:x;y>0\right)\)
Theo đề, ta có
\(\hept{\begin{cases}xy=400\\\frac{1}{2}xy+\left(\frac{1}{2}x-1\right)\left(y+100\right)=400\end{cases}}\)
\(\hept{\begin{cases}xy=400\\\frac{1}{2}xy+50x-y-100=200\end{cases}}\)
\(\hept{\begin{cases}xy=400\\50x-y=100\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\50x-\frac{400}{x}=100\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\50x^2-100x-400=0\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\x^2-2x-8=0\end{cases}}\)
\(\hept{\begin{cases}y=\frac{400}{x}\\x=4\left(n\right);x=-2\left(l\right)\end{cases}}\)
\(\hept{\begin{cases}y=100\\x=4\end{cases}}\)