K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
23 tháng 5 2021

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

DD
23 tháng 5 2021

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

TA CÓ

\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)

\(=1-2+1=0\)

vậy ......

TA CÓ

\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)

vậy..............

4 tháng 4 2019

Thay \(x=\frac{1}{2}\)vào P (x) ta có:

\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)

\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)

\(P\left(\frac{1}{2}\right)=1-2+1\)

\(P\left(\frac{1}{2}\right)=0\)

Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

f(-1)=1+4-5=0

f(5)=25-20-5=0

Do đó: x=-1; x=5 là các nghiệm của f(x)

4 tháng 3 2022

Ta có \(f\left(-1\right)=1+4-5=0\)

Vậy x = -1 là nghiệm đa thức trên 

\(f\left(5\right)=25-20-5=0\)

Vậy x = 5 là nghiệm đa thức trên 

8 tháng 2 2021

*Chứng tỏ \(x=\frac{1}{2}\) là nghiệm của đa thức \(P\left(x\right)=4x^2-4x+1\)

Cho \(P\left(x\right)=0\)

\(\Rightarrow4x^2-4x+1=0\)

\(\Rightarrow4x^2-2x-2x+1=0\)

\(\Rightarrow2x\left(2x-1\right)-\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow x=\frac{1}{2}\)

\(\Rightarrow P\left(x\right)\) có nghiệm là \(x=\frac{1}{2}\)

\(\Rightarrowđpcm\)

*Chứng tỏ đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm

Ta có: \(4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1>0\)

hay \(Q\left(x\right)>0\)

\(\Rightarrow\)Đa thức \(Q\left(x\right)=4x^2+1\) không có nghiệm   (đpcm)

8 tháng 4 2018

a/ f(x) = \(\frac{1}{3}x^4+\frac{3}{2}+1=\frac{1}{3}x^4+\frac{5}{2}\)

Ta có \(\frac{1}{3}x^4\ge0\)với mọi giá trị của x

=> \(\frac{1}{3}x^4+\frac{5}{2}>0\)với mọi giá trị của x

=> f (x) vô nghiệm (đpcm)

b/ \(P\left(x\right)=-x+x^5-x^2+x+1=x^5-x^2+1=x^2\left(x^3-1\right)+1\)

Ta có \(x^2\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)\ge0\)với mọi giá trị của x

=> \(x^2\left(x^3-1\right)+1>0\)với mọi giá trị của x

=> P (x) vô nghiệm (đpcm)