Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--
a) Xét hai tg AEB và AEC có
AE cạnh chungg
BAD = CAD [ Tia phân giác của góc A ]
AB = AC [ gt ]
=> tg AEB= AEC [ c - g c ]
b ) Tam giác ABC cân có AD là phân giác nên đồng thời là đường cao => AD vuông góc với BC
tg AEB = tg AEC [ cmt ]
=> EB= EC => tg BEC cân tại B , có AD là đường cao nên đồng thời là phân giác => ED là phan giác góc BEC
a: Xét ΔAEB và ΔAEC có
AB=AC
góc BAE=góc CAE
AE chung
Do đó: ΔAEB=ΔAEC
b: Xét ΔEDB và ΔEDC có
ED chung
EB=EC
BD=CD
DO đó: ΔEDB=ΔEDC
=>góc BED=góc CED
=>ED là phân giác của góc BEC
c: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
a, xét tam giác BAE và tam giác BDE có : BE chung
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
AB = BD (gt)
=> tam giác BAE = tam giác BDE (c-g-c)
b, tam giác BAE = tam giác BDE (câu a)
=> góc BAE = góc BDE (đn)
mà óc BAE = 90 do tam giác ABC vuông tại A (gt)
=> góc BDE = 90
=> ED _|_ BC (đn)
c, tam giác BAE = tam giác BDE (Câu a)
=> AE = DE (đn)
d, gọi BE cắt CI tại O
AB = BD (gt)
AI = DC (gt)
AB + AI = BI
BD + DC = BC
=> BI = BC
xét tam giác IOB và tam giác COB có : OB chung
góc IBO = góc CBO do BO là phân giác của góc IBC (gt)
=> tam giác IOB = tam giác COB (c-g-c)
=> góc IOB = góc COB (đn)
mà góc IOB + góc COB = 180 (kb)
=> góc IOB = 180 : 2 = 90
=> BO _|_ CI (đn)
CA _|_ AB do góc BAC = 90
xét tam giác IBC
=> ID _|_ BC (tc)
mà ED _|_ BC (câu b)
=> I; E; D thẳng hàng
a) vì tam giác ABC vuông tại A và có góc ABC = 600
=> tam giác ABC đều
=> AB = AC = BC
hihi!!!
Trịnh Tài Đức mk giải sai rùi sorry do đọc ko kĩ đề hì !!!!!!
756865