Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Xét tam giác $AOK$ và $BOK$ có:
$\widehat{OKA}=\widehat{OKB}=90^0$
$OK$ chung
$OA=OB=R$
$\Rightarrow \triangle AOK=\triangle BOK$ (ch-cgv)
$\Rightarrow \widehat{AOK}=\widehat{BOK}$
b. Xét tam giác $ACO$ và $BCO$ có:
$AO=BO$
$\widehat{O_1}=\widehat{O_2}$ (cm ở phần a)
$CO$ chung
$\Rightarrow \triangle ACO=\triangle BCO$ (c.g.c)
$\Rightarrow \widehat{OBC}=\widehat{OAC}=90^0$
$\Rightarrow OB\perp BC$ nên $CB$ là tiếp tuyến của $(O)$
Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:
Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)
⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)
a: ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
Do đó: ΔOAC=ΔOBC
=>góc OBC=90 độ
=>CB là tiếp tuyến của (O)
b: Xét (O) có
ΔBAD nôi tiếp
BD là đường kính
Do đó:ΔBAD vuông tại A
=>AD vuông góc với BA
=>AD//CB
a: Xét (O) có
OH là một phần đường kính
AB là dây
OH⊥AB tại H
Do đó: H là trung điểm của AB
Xét ΔMAB có
MH là đường trung tuyến
MH là đường cao
Do đó:ΔMAB cân tại M
Xét ΔOAM và ΔOBM có
OA=OB
AM=BM
OM chung
Do đó:ΔOAM=ΔOBM
Suy ra: \(\widehat{OAM}=\widehat{OBM}=90^0\)
=>ΔOMB vuông tại B
=>MB là tiếp tuyến
b: Xét (O) có
ΔABC nội tiếp
BC là đường kính
Do đó:ΔABC vuông tại A
a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.
b) AI = AB : 2 = 12 cm.
Tính được OI = 9 cm.
cm.
a: Xét ΔOAK vuông tại K và ΔOBK vuông tại K có
OA=OB
OK chung
Do đó: ΔOAK=ΔOBK
Suy ra: \(\widehat{AOK}=\widehat{BOK}\)