Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1-1/2)*(1-1/2)*...(1-100)
1-1/3=2/3
1-1/4=3/4
............................
1-1/100=99/100
=1/2*2/3*3/4*....99/100
(1*2*3*4*....*99)/(2*3*4*...*100)
=1/100
=>1/100
học tốt
(1-1/2) x (1-1/3) x .... x (1-1/100)
= 1/2 x 2/3 x ... x 99/100
= 1x2x...x99/2x3x..x100
= 1/ 100
a, \(\frac{3}{5}+25-\frac{1}{5}\)
\(=\left(\frac{3}{5}-\frac{1}{5}\right)+25\)
\(=\frac{2}{5}+25\)
\(=25\frac{2}{5}\)
\(=25,4\)
b, \(13.3.32,27+67,63.39\)
\(=39.32,27+67,63.39\)
\(=39\left(32,37+67,63\right)\)
\(=39.100\)
\(=3900\)
c, \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{99}{100}\)
\(=\frac{1}{100}\)
Ta có 1-1/2 =1/2
1-1/3=2/3
1-1/4=3/4
.......
1- 1/100=99/100
=> P= 1/2x2/3x3/4x....x99/100
= ( 1x2x3x...x 99)/ (2x3x4x...x100)
=1/1000
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)
\(M=1\times\dfrac{1}{2}+\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+...+\dfrac{1}{99}\times\dfrac{1}{100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
à là [1 - 1/2018] nhé chưa không phải [1 - 1/100] đâu