Cho tam giac ABC vuong can tai A.M la trung diem cua BC
a,Chung minh AM vuong goc voi BC
b,D la diem nam giua B va M.Goi H va I theo thu tu la chan cac duong vuong goc ke tu B va C xuong AD.Chung minh BH=AI.Tu do suy ra BH^2+CI^2 ko doi khi D di chuyen tren doan BM
c,AM cat CI tai N.Chung minh DN vuong goc voi AC
a) Xét \(\Delta ABM\)và \(\Delta ACM\)có:
\(BA=CA\)(gt)
\(\widehat{ABM}=\widehat{ACM}\) (gt)
\(BM=CM\) (gt)
suy ra: \(\Delta ABM=\Delta ACM\) (c.g.c)
\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\) (kề bù)
\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=90^0\)
\(\Rightarrow\)\(AM\)\(\perp\)\(BC\)