Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D.
a, So sánh AB và AD
b, So sánh AD và DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\widehat{ABD}=\dfrac{90^0-\widehat{C}}{2}\)
\(\widehat{ADB}=180^0-\widehat{BDC}=180^0-\left(\widehat{C}+\dfrac{\widehat{B}}{2}\right)=\dfrac{360^0-2\widehat{C}-\widehat{B}}{2}\)
\(\widehat{ADB}-\widehat{ABD}=\dfrac{\left(360^0-2\widehat{C}-\widehat{B}-90^0+\widehat{C}\right)}{2}\)
\(=\dfrac{270^0-\widehat{C}-\widehat{B}}{2}=\dfrac{270^0-90^0}{2}=90^0\)
=>\(\widehat{ADB}>\widehat{ABD}\)
=>AB>AD
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
mà AB<BC
nên AD<CD
Câu B:
Xét hai tam giác vuông ABD và HBD, ta có:
∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).
Cạnh huyền BD chung
∠BAD = ∠BHD = 90º
Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)
⇒ AD = HD (2 cạnh tương ứng) (1)
Trong tam giác vuông DHC có ∠DHC = 90o
⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) suy ra: AD < DC
Kẻ DH⊥BC
Xét ΔABD,ΔHBD
có :
⎧⎩⎨⎪⎪⎪⎪BADˆ=BHDˆ(=90o)BD:chungABDˆ=HBDˆ(AD là tia phân giác của góc B)
⇒ΔABD=ΔHBD(ch−gn)
⇒AD=DH
(2 cạnh tương ứng) (1)
Xét ΔDHC
có :
Hˆ=90o⇒DH<DC
( cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) => DC>AD
ve hinh nhu de
a, ko biet
b, vi la tia phan giac nen ad va dc =nhau
a, xet tam giac ADB va tam giac EBD co:
goc ABD = goc EBD (vi BD la tia phan giac cua goc B)
BD chung
goc BAD = goc BED (=90 do)
suy ra tam giac ADB = tam giac EBD
b,vi tam giac ABC la tam giac vuong nen theo dinh ly pi-ta-go ta co:
BC^2 = AB ^2 + AC^2
= 6^2 + 8^2
= 36+64
=100 suy ra BC = 10
ta co tam giac ABC = tam giac EBD nen AB = BE = 6
ta co EC = BC - BE
= 10 - 6
=4
c,d ban tu lm
a)Có AB\(\perp\)AC;xy\(\perp\) AC
=>AB//xy
=> ABD=DEC(2 góc sole trong) (P/s: Góc nhé.)
Mà ABD=DBC(Vì BD-phân giác ABC)
=>DBC=DEC
=>Tam giác CBE cân
Vậy...
b) Có BDC là góc ngoài tại đỉnh D của tam giác ABD
=>BDC=ABD+BAD
=>BDC=ABD+90o
=>BDC là góc tù
Xét tam giác ABC có BAD=90o
=>BD lớn nhất(quan hệ góc-cạnh đối diện)=>BD>BA(1)
Xét tam giác BDC có BDC là góc tù
=>BC lớn nhất=>BC>BD(2)
Từ (1)(2)=>BC>BA
Mà BC=CE(Vì tam giác CBE cân)
=>CE>AB
Vậy...
c) Xét tam giác DCE có DCE=90o
=>DE lớn nhất(qh góc-cạnh đối diện)
=>DE>CE
Mà CE>BD(cmt)
=>DE>BD
Kẻ từ B đến AC có BD là đường xiên;AD là hình chiếu của BD
Kẻ từ E đến AC có DE là đường xiên;DC là hình chiếu của DE
Mà DE>BD(cmt)
=>DC>AD(qh đường xiên-hình chiếu)
Vậy...
_Học tốt_
Bài 2:
a: \(\widehat{ABD}=\dfrac{90^0-\widehat{C}}{2}\)
\(\widehat{ADB}=180^0-\widehat{BDC}=180^0-\left(\widehat{C}+\dfrac{\widehat{B}}{2}\right)=\dfrac{360^0-2\widehat{C}-\widehat{B}}{2}\)
\(\widehat{ADB}-\widehat{ABD}=\dfrac{\left(360^0-2\widehat{C}-\widehat{B}-90^0+\widehat{C}\right)}{2}\)
\(=\dfrac{270^0-\widehat{C}-\widehat{B}}{2}=\dfrac{270^0-90^0}{2}=90^0\)
=>\(\widehat{ADB}>\widehat{ABD}\)
=>AB>AD
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
mà AB<BC
nên AD<CD