K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

thỏa mãn ji hả bạn mik ko hiểu

16 tháng 11 2018

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

16 tháng 11 2018

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

19 tháng 5 2017

2a² + b²/4 + 1/a² = 4 
⇔ 8a⁴ + a²b² + 4 = 16a² 
⇔ a²b² = -8a⁴ + 16a² - 4 
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4 
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4 
⇔ │ab│ ≤ 2 
⇔ -2 ≤ ab ≤ 2 

--> A = ab + 2011 ≥ 2009 

Dấu " = " xảy ra ⇔ 
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1 
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2 

2 tháng 2 2017

1. x + 2x = -36

=> 3x = -36

=> x = -36 : 3

=> x = -12

2. (2x + 3) \(⋮\)(x - 2)

=> (2x - 2) + 5 \(⋮\)(x - 2)

=> 2(x - 2) + 5 \(⋮\)(x - 2)

=> 5 \(⋮\)(x - 2)

=> x - 2 \(\in\)Ư(5) = {-5;-1;1;5}

=> x \(\in\){-3;1;3;7}

3. Khi đó a . (-b) = -132

4. -2(3x + 2) = 12 + 22 + 32

=> -2(3x + 2) = 1 + 4 + 9

=> -2(3x + 2) = 14

=> 3x + 2 = 14 : (-2)

=> 3x+ 2 = -7

=> 3x = -7 - 2

=> 3x = -9

=> x = -9 : 3

=> x = -3

2 tháng 2 2017

1/ \(x+2x=-36\)

\(\Rightarrow3x=-36\)

\(\Rightarrow x=-\frac{36}{3}\)

\(\Rightarrow x=-12\)

2/    \(\left(2x+3\right)⋮\left(x-2\right)\)

\(\Leftrightarrow\left(2x-4\right)+7⋮\left(x-2\right)\)

\(\Leftrightarrow2\left(x-2\right)+7⋮\left(x-2\right)\)

\(\Rightarrow7⋮\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)\inƯ\left(7\right)\)

\(\Rightarrow x\inƯ\left(7-2\right)\)

\(\Rightarrow x\inƯ\left(5\right)\)

\(\Rightarrow x\in\left\{-5,1,5\right\}\)

Vậy x nhỏ nhất để \(\left(2x-3\right)⋮\left(x-2\right)\) là -5

3/ Vì \(a\cdot b=32\)

\(\Rightarrow-a\cdot b=-\left(a\cdot b\right)=-32\)

4/ \(-2\left(3x+2\right)=1^2+2^2+3^2\)

\(\Leftrightarrow-6x-4=1+4+9\)

\(\Leftrightarrow-6x=14+4\)

\(\Leftrightarrow-6x=18\)

\(\Leftrightarrow x=\frac{18}{-6}\)

\(\Rightarrow x=3\)

2 tháng 2 2021

Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)

\(\Rightarrow S=ab+2009\ge2007\)

Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2

* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1