Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a² + b²/4 + 1/a² = 4
⇔ 8a⁴ + a²b² + 4 = 16a²
⇔ a²b² = -8a⁴ + 16a² - 4
⇔ a²b² = -8(a⁴ - 2a² + 1) + 4
⇔ a²b² = -8(a² - 1)² + 4 ≤ 4
⇔ │ab│ ≤ 2
⇔ -2 ≤ ab ≤ 2
--> A = ab + 2011 ≥ 2009
Dấu " = " xảy ra ⇔
{ a² - 1 = 0 . . . --> { a = 1 . . . . . { a = -1
{ ab = -2 . . . . . . . { b = -2 hoặc .{ b = 2
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)
quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).
nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)
mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)
nên x+ y + z \(\ge\)6 (2)
từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.
dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.
vậy Min S = 48.
\("a+b"^2\ge4ab=4\Rightarrow a+b\ge2\)
\(a^2+b^2\ge\frac{"a+b"^2}{2}\)
Nên A \(\ge\frac{3"a+b"^2}{2}+\frac{4}{a+b}=\frac{"a+b"^2}{2}+\frac{4}{a+b}+\frac{4}{a+b}-\frac{4}{a+b}+"a+b"^2\ge6-2+4=8\)
Nên Min \(A=8\)khi \(a=b=1\)
P/s: Thay dấu Ngođặc Kép thành Ngoặc Đơn nhé
Đặt \(a^2+b^2+c^2=t\)
Ta đi chứng minh: \(t=a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)(*)
Thật vậy: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=\left(a^3+b^3+c^3\right)+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)(**)
Áp dụng BĐT AM - GM, ta có: \(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)(do a,b dương) (1)
Tương tự ta có: \(b^3+bc^2\ge2b^2c\left(2\right);c^3+2ca^2\ge2c^2a\left(3\right)\)
Cộng theo vế của các BĐT (1), (2), (3), ta được: \(\left(a^3+b^3+c^3\right)+\left(ab^2+bc^2+ca^2\right)\ge2\left(a^2b+2b^2c+2c^2a\right)\)(***)
Từ (**) và (***) suy ra \(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\). Do đó (*) đúng.
Ta có: \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}=t+\frac{9-t}{2t}\)với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Bài toán trở thành tìm GTNN của \(f\left(t\right)=t+\frac{9-t}{2t}\)với \(t\ge3\)
Ta chứng minh \(f\left(t\right)\ge f\left(3\right)\Leftrightarrow t+\frac{9-t}{2t}\ge4\Leftrightarrow\frac{\left(t-3\right)\left(2t-3\right)}{2t}\ge0\)(đúng với mọi \(t\ge3\))
Vậy \(MinP=4\)khi t = 3 hay a = b = c = 1
Ta dễ có:
\(2+4ab=\left(a+b\right)^2+a+b\ge4ab+a+b\Rightarrow a+b\le2\)
\(P=\frac{a^2-2a+2}{b+1}+\frac{b^2-2b+2}{a+1}\)
\(=\frac{\left(a-1\right)^2}{b+1}+\frac{\left(b-1\right)^2}{a+1}+\frac{1}{a+1}+\frac{1}{b+1}\)
\(\ge\frac{\left(a+b-2\right)^2}{a+b+2}+\frac{4}{a+b+2}\ge\frac{\left(a+b-2\right)^2}{a+b+2}+1\ge1\)
Đẳng thức xảy ra tại \(a=b=1\)
hmm check hộ mình nhá
Áp dụng Cô-si, ta được: \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=\left(a^2+\frac{b^2}{4}\right)+\left(a^2+\frac{1}{a^2}\right)\ge\left|ab\right|+2\Rightarrow\left|ab\right|\le2\)hay \(-2\le ab\le2\)(/*)
\(\Rightarrow S=ab+2009\ge2007\)
Đẳng thức xảy ra khi a = -1; b = 2 hoặc a = 1; b = -2
* Chú ý: Với đánh giá (/*) thì ta còn tìm được GTLN của S = 2011 khi a = 1; b = 2 hoặc a = 2; b = 1 hoặc a = -1; b = -2 hoặc a = -2; b = -1