Xem đủ 10 lượt xem nt mk nhận tik ấn vô đây
Tìm x,y,z : 2x = 3y = 4z và x + y + z = 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x=3y=4z <=> x/3=y/4=z/2
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{72}{9}=8\)
Bài này t nhớ nãy t làm rồi , rán quay lại tham khảo
Đề phải là x+y+z=36 mới đúng bạn nhé
\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)
\(\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{5}=3\Rightarrow y=3.5=15\)
\(\frac{z}{3}=3\Rightarrow z=3.3=9\)
Vậy x=12 ; y=15 và z=9
Đề nó cho sẵn rồi mà bát ku
Theo đề bài ta có :
\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)và \(x+y+z=36\)
Theo đề bài ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)
\(\Rightarrow\)\(x=3.4=12\)
\(\Rightarrow\)\(y=3.5=15\)
\(\Rightarrow\)\(z=3.3=9\)
\(2x=3y=4z\) \(\Leftrightarrow\) \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{96}{13}\)
suy ra: \(\frac{x}{6}=\frac{96}{13}\) \(\Leftrightarrow\) \(x=44\frac{4}{3}\)
\(\frac{y}{4}=\frac{96}{13}\) \(\Leftrightarrow\) \(y=29\frac{7}{13}\)
\(\frac{z}{3}=\frac{96}{13}\) \(\Leftrightarrow\) \(z=22\frac{2}{13}\)
Vậy....
Ấn vô đây đăng kí xem ít nhất 5 lượt sau đó nt nhận tik
Tìm x,y,z : |x - 2| + (y + 3)2 + |z + 6| = 0
Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge0\\\left(y+3\right)^2\ge0\\\left|z+6\right|\ge0\end{cases}\forall x,y,z\Rightarrow\left|x-2\right|+\left(y+3\right)^2+\left|z+6\right|\ge0}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+3\right)^2=0\\\left|z+6\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-3\\z=-6\end{cases}}}\)
Ta co : |x-2| ; (y+3)^2 ; |z+6| đều >= 0
=> |x-2|+(y+3)^2+|z+6| >= 0
Dấu "=" xảy ra <=> x-2=0 ; y+3=0 ; z+6=0 <=> x=2 ; y=-3 ; z=-6
Vậy x=2 ; y=-3 ; z=-6
Tk mk nha
a, x - y = 100
=> x = 100 + y
=> y = 100 + x
b, x + y = 25
=> x = 25 - y
=> y = 25 - x
Theo đề bài ta có:
x - y = 100
x + y = 25
\(\Rightarrow\) x = ( 25 + 100 ) : 2 = 62,5
y = 62,5 - 100 = -37,5
Vậy x = 62,5 ; y = -37,5
Ta có : 3x = 4y = 5z \(\Leftrightarrow\)\(\frac{3}{x}\)= \(\frac{4}{y}\)= \(\frac{5}{z}\)
Theo dãy tỉ số bằng nhau ta có :
\(\frac{3}{x}\)+ \(\frac{4}{y}\)+ \(\frac{5}{z}\)\(\Leftrightarrow\)\(\frac{3+4+5}{x+y+z}\)\(\Leftrightarrow\)\(\frac{4}{3}\)
\(\Rightarrow\)x = \(\frac{3}{2}\) ; y = 3 ; z = \(\frac{15}{4}\)
Vậy x = \(\frac{3}{2}\); y =3 ; z = \(\frac{15}{4}\)
\(2x=3y=4z\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)
\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{4}=2\Rightarrow y=2.4=8\)
\(\frac{z}{2}=2\Rightarrow z=2.2=4\)
Vậy x=6 ; y=8 và z=4
Bài này cũng tạm được :
theo đề bài ta có :
\(2x=3y=4z\)
\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}\)và \(x+y+z=18\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{2}=\frac{x+y+z}{3+4+2}=\frac{18}{9}=2\)
\(\Rightarrow\)\(x=2.3=6\)
\(\Rightarrow\)\(y=2.4=8\)
\(\Rightarrow\)\(z=2.2=4\)
Vậy bạn tự kết luận