Chứng minh rằng 2 đường thẳng cùng song song với một đường thẳng thứ ba thì 2 đường thẳng ấy song song với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hỏi nhiều quá , mà thà bạn nói ko cần vẽ hình thì còn giải , đằng này đã vẽ hình còn phải ghi GT , KL . mệt !!!!!!!!!!! @_@
Chứng Minh Định lý hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
+ a // b
∠ aAb slt ∠ cBA
=> ∠ aAb = ∠ cBA (tc) (1)
+ AI là pg của ∠ aAB => ∠ A1 = ∠ aAB : 2 (2)
+ BX là pg của ∠ cBA => ∠ B1 = ∠ cBA : 2 (3)
(1)(2)(3) => ∠ A1 = ∠ B1 mà ∠ A1 slt ∠ B1
nên BX // AI
Cho a // b , a // c . Chứng minh : b // c
Giải
Vẽ đường thẳng d // a
Do a //b và a vuông góc với d
-> b //d (1)
Do a //c và a vuông góc với d
-> c//d (2)
Từ (1) và (2) => b// c
=> đpcm
ta có a, b, c là 3 đường thẳng phân biệt và a//b, c//b
giả sử a cắt c tại O
như vậy qua O ta kẻ được hai đường thẳng a và c cùng // với c như vậy trái với tiên đề Oclit (qua 1 điểm nằm ngoài đường thẳng ta chỉ kẻ được 1 và chỉ 1 đường thẳng // vơi đường thẳng đã cho)
=> a //c
a)
GT |
a \(\perp\) c b \(\perp\) c |
KL | a // b |
b)
GT |
a // c b // c |
KL | a // b |
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia
Chứng minh định lí hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song
mk ko biết kẻ hình
a // b
c // b
=> a // b // c