Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hỏi nhiều quá , mà thà bạn nói ko cần vẽ hình thì còn giải , đằng này đã vẽ hình còn phải ghi GT , KL . mệt !!!!!!!!!!! @_@
Chứng Minh Định lý hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau
+ a // b
∠ aAb slt ∠ cBA
=> ∠ aAb = ∠ cBA (tc) (1)
+ AI là pg của ∠ aAB => ∠ A1 = ∠ aAB : 2 (2)
+ BX là pg của ∠ cBA => ∠ B1 = ∠ cBA : 2 (3)
(1)(2)(3) => ∠ A1 = ∠ B1 mà ∠ A1 slt ∠ B1
nên BX // AI
Cho a // b , a // c . Chứng minh : b // c
Giải
Vẽ đường thẳng d // a
Do a //b và a vuông góc với d
-> b //d (1)
Do a //c và a vuông góc với d
-> c//d (2)
Từ (1) và (2) => b// c
=> đpcm
ta có a, b, c là 3 đường thẳng phân biệt và a//b, c//b
giả sử a cắt c tại O
như vậy qua O ta kẻ được hai đường thẳng a và c cùng // với c như vậy trái với tiên đề Oclit (qua 1 điểm nằm ngoài đường thẳng ta chỉ kẻ được 1 và chỉ 1 đường thẳng // vơi đường thẳng đã cho)
=> a //c
a)
GT |
a \(\perp\) c b \(\perp\) c |
KL | a // b |
b)
GT |
a // c b // c |
KL | a // b |
Chứng minh định lí hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song
Cho d'∥d, d"∥d, a\(⊥\)d
- d' ∥ d (gt)
a\(⊥\)d (gt)
\(\Rightarrow\) a\(⊥\)d' (từ vuông góc đến song song) (1) - d" ∥ d (gt)
a\(⊥\)d (gt)
\(\Rightarrow\) a\(⊥\)d" (từ vuông góc đến song song) (2) - Từ (1) và (2) \(\Rightarrow\)d' ∥ d" (từ vuông góc đến song song)
d' ∥ d (gt), d" ∥ d (gt)
\(\Rightarrow\)d ∥ d' ∥ d"
mk ko biết kẻ hình
a // b
c // b
=> a // b // c