Cho tam giác ABC vuông tại A ( AC > AB ).Trên AC lấy điểm D sao cho CD = AB; M là trung điểm của AD, N là trung điểm của BC. Tính góc NMC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB=CD và CD//AB
=>DC vuông góc AC
b: AB+BC=CD+BC>DB=2BM
c: Xet ΔABD và ΔCDB có
AB=CD
BD chung
AD=CB
=>ΔABD=ΔCDB
a: Sửa đề: ΔABH đồng dạng với ΔCBA
Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét tứ giác ABCD có
AB//CD
AB=CD
=>ABCD là hbh
=>AD//BC
=>AD vuông góc AH
ΔADH vuông tại A có AF là đường cao
nên HF*HD=HA^2=HB*HC
Em tự vẽ hình hì
Lấy K thuộcAC sao cho KN vuông góc AC=>Góc MKN=90 độ[1]
Xét tam giác ABC
N là trung điểm BC;NK//AB=>K là trung điểm AC
=>KN là đường trung bình tam giác ABC=>KN=AB/2[2]
KM=KA-AM=AC/2-AM/2=CM/2=AB/2[3
Từ [1];[2];[3]=>Tam giác MKN vuông cân tại K=>Góc NKC=45 độ
Lớp 7 chưa học đường trung bình thì em lên mạng xem cách chứng minh
Good luck
a) Xét tam giác ABC có:
BC2 = 102 = 100 (cm)
AB2 + AC2 = 62 + 82 = 36 + 64 = 100 (cm)
=> BC2 = AB2 + AC2 (= 100)
=> Tam giác ABC vuông tại A (định lý Pytago đảo)
b) MB = MD (gt) => M là trung điểm BD
Xét Tứ giác ABCD có:
M là trung điểm của BD (cmt)
M là trung điểm của AC (gt)
=> ABCD là hình bình hành (dhnb)
=> AB // CD (Tính chất hình bình hành)
a) Xét ∆AHD và ∆FHA có:
^AHD = ^FHA (= 900)
\(\frac{AH}{HD}=\frac{HF}{AH}\)(gt)
Do đó ∆AHD ~ ∆FHA (c.g.c)
⇒ ^HAD = ^HFA
Mà ^HFA + ^FAH = 900 nên ^HAD + ^FAH = 900 ⇒ ^FAD = 900
Vậy ∆ADF vuông tại A (đpcm)
b) Đặt AC = CD = a thì AB = 2a
∆ABC vuông tại A nên BC2 = AB2 + AC2 = (2a)2 + a2 = 5a2 ⇒ \(BC=a\sqrt{5}\)
Ta có: BD = BC - CD \(=a\sqrt{5}-a\Rightarrow BD^2=a^2\left(\sqrt{5}-1\right)^2=a^2\left(6-2\sqrt{5}\right)\)(1)
và AE = AB - BE = AB - BD = AB - (BC - CD) = AB - BC + CD \(=2a-a\sqrt{5}+a=\left(3-\sqrt{5}\right)a\)
\(\Rightarrow AB.AE=2a.\left(3-\sqrt{5}\right)a=a^2\left(6-2\sqrt{5}\right)\)(2)
Từ (1) và (2) suy ra BD2 = AB.AE (đpcm)
Vì tam giác BEC=tam giác CDB
=>BE=CD (1)
Sau đó bạn chứng minh' ED song song vs BC
=>DEC = ECB ( so le trong )
Mà BCE = ECD (vì CE là tia phân giác của DCB)
=> DEC = DCE => tam giác DEC cân tại D
=> DE = DC (2)
Từ (1) và (2) => BE = ED =DC
vì tam giác BEC=tam giác CDB
=>BE=CD (1)
'sau đó bạn chứng minh' ED song song vs BC
=>DEC = ECB ( so le trong )
mà BCE = ECD (vì CE là tia phân giác của DCB)
=> DEC = DCE => tam giác DEC cân tại D
=> DE = DC (2)
từ (1) và (2) => BE = ED =DC
ủng hộ mik nhoa
nmc = không biết