B=7+7^2+7^3+...+7^400. chứng minh rằng B chia hết 400
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=7+7^2+7^3+.....+7^{4n}\) \(\left(n\in N\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+......+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+....+7^{4n-3}.400\)
\(\Leftrightarrow\left(7+7^5+....+7^{4n-3}\right).400\) chia hết cho 400
Vậy A chia hết cho 400
Bạn Nguyễn Đức Tiến có thể viết rõ hộ mình được không ạ? Mình chưa hiểu
\(7^1+7^2+...+7^{4n-1}+7^{4n}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7^1\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7^1\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7^1+...+7^{4n-3}\right)⋮400\)
71 + 72 + 73 + 74 + ... + 74n - 1 + 74n
= (71 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + ... + (74n - 3 + 74n - 2 + 74n - 1 + 74n)
= 71 . (1 + 7 + 72 + 73) + 75 . (1 + 7 + 72 + 73) + ... + 74n - 3 . (1 + 7 + 72 + 73)
= 71 . 400 + 75 . 400 + ... + 74n - 3 . 400
= 400 . (71 + 75 + ... + 74n - 3)
Vì 400 \(⋮\)400 nên suy ra 400 . (71 + 75 + ... + 74n - 3) \(⋮\)400
Vậy ....
~.~