Cho tam giác ABC vuông tại A và AB = AC . Qua đỉnh A kẻ đường thẳng xy sao cho xy không cắt đoạn thẳng BC . Kẻ BD và CE vuông góc với xy ( \(D\in xy,E\in xy\))
CMR : a) góc DAB = góc ACE
b) tam giác ABD = tam giác CAE
c) DE = BD + CE .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kham khảo câu này nhé dù không làm nhưng bạn có thể cho mình 1 tk được ko.
Câu hỏi của Trịnh Tuấn Tú - Toán lớp 7 - Học toán với OnlineMath
Do xy không cắt đoạn BC
=> xy //BC
=> ECBD là hình chữ nhật'
Xét \(\Delta ABD\)và \(\Delta ACE\)có: \(\hept{\begin{cases}AB=AC\left(gt\right)\\\widehat{AEC}=\widehat{ADB}=90^o\\EC=BD\end{cases}}\)
=> \(\Delta ABD=\Delta ACE\)
=> AE=AD
=> Tam giác ADE cân tại E
\(\widehat{ACB}=45^o\Rightarrow\widehat{ECA}=45^o\)
=> EC=EA
Tương tự: AD=BD
=> DE=AE+AD=EC+BD
a, Xét \(\Delta\)ABD và \(\Delta\)ACE ta cs :
AB = AC (gt)
^AEC = ^ADB = 900
CE = BD (gt)
=> \(\Delta\)ABD = \(\Delta\)ACE
b, Ta có xy không cắt BC
=> xy//BC
=> ^DBA= ^DAB (vị trí đồng vị)
=> \(\Delta\) BDA cân tại D
=> DA=DB
\(\Delta\)EAC cân tại E (cmt)
=> EA=EC
=> DE = AD + AC = BD + CE
a) Có :
Góc ACE = 180' - ( 90' + CAE ) (1)
Góc DAB = 180' - ( 90' + CAE ) (2)
=> Góc ACE = Góc DAB ( Từ 1 và 2 ) (3)
b) Xét tam giác ABD vuông tại D và tam giác CEA vuông tại E
Có : + AB = AC ( gt )
+ Góc DAB = Góc ACE ( cmt )
=> Tam giác ABD = Tam giác CEA ( cạnh huyền - góc nhọn ) (3)
c) Từ (3) ta có :
AD = EC ( hai cạnh tương ứng )
DB = AE ( hai cạnh tương tứng )
Mà DE = AD + AE
=> DE = DB + CE
hg
WTF