CMR: với mọi số nguyên n thì n7-n chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 7 là số nguyên tố nên theo định lí Fermat nhỏ, ta được:
\(n^7-n⋮7\)
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
a) \(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
vì đó là tích của ba số tự nhiên liên tiếp nên chia hết cho 3
2 câu sau tương tự nhen
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
=\(n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)-5n\left(n-1\right)\left(n+1\right)\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)-5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 5 số nguyên dương liên tiếp \(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(1)
Do \(5⋮5\Rightarrow5n\left(n-1\right)\left(n+1\right)⋮5\)(2)
Từ (1) và (2) => ĐPCM
+ Với n = 0 thì n^7 - n = 0 chia hết cho 7 (đúng)
+ Giả sử k^7 - k chia hết cho 7 với k > 1
+ Ta cm : (k + 1)^7 - (k + 1) cũng chia hết cho 7
Ta có :
(k + 1)7 - (k + 1) = k7 + 7M + 1 - (k + 1)
= k^7 - k + 7M chia hết cho 7
K sai đâu ạ đề vốn vậy k sai đâu bn