K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)

Nếu \(n=3k+1\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)

Nếu \(n=3k+2\left(k\in Z\right)\)

\(\Rightarrow A=n^3-n\)

\(=n\left(n-1\right)\left(n+1\right)\)

\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)

Vậy \(n^3-n⋮3\forall n\in Z\)

22 tháng 8 2021

 n3−n⋮3∀n∈Z

3 tháng 5 2019

Đáp án: B

Bước 2 sai vì  27k3 + 27k + 9k + 1 không chia hết cho 3

21 tháng 6 2021

Ta có:

`13^n-1(n in NN^**)`

`=(13-1)(13^{n-1}+........+1)`

`=12..... vdots 12`

16 tháng 7 2016

Nếu n chẵn

=> n2-1 lẻ

=> không chia hết cho 24 (1)

Nếu n chia hết cho 3

=> n2 chia hết cho 3

=> n2-1 không chia hết cho 3

=> n2-1 không chia hết cho 24 (2)

Từ (1) và (2) 

=> đpcm

16 tháng 7 2016

thanks bạn nhìu 

 

5 tháng 7 2016

Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))

\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)

Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.

Do đó : 4k(k+1) chia hết cho 2.4=8

29 tháng 8 2018

Mệnh đề: "Với mọi số nguyên n không chia hết cho 3, n 2 − 1 chia hết cho 3". 

Mệnh đề phủ định của mệnh đề trên là  "Tồn tại số nguyên n không chia hết cho 3,  n 2 − 1  không chia hết cho 3".

Mệnh đề phủ định của mệnh đề  " ∀ x ∈ X ; ​​   P ( x ) " là  " ∃ x ∈ X ; ​​   P ( x ) ¯ "

Đáp án A

28 tháng 8 2019

ta xét hai khả năng

1. nếun⋮3 thì (n3+2n)⋮3

2.nếu n không chia hết cho 3 thì n có dạng n=3k+1 hoặc n=3k+2

với k thuộc N

Với n=3k+1:(n3+2n)=(3k+1)3+2(3k+1)

=27k3+27k2+9k+1+6k+2=3(9k3+9k2+5k+1)⋮3

Với n=3k+2⋮(n3+2n)=(3k+2)3+2(3k+2)