BÀI 1
CMR: MỘT SỐ CHÍNH PHƯƠNG HOẶC LÀ CHIA HẾT CHO 3 HOẶC LÀ CHIA 3 DƯ 1
BÀI 2
CMR: MỘT SỐ CHÍNH PHƯƠNG KHI CHIA CHO 4 CÓ SỐ DƯ KO THỂ NÀO LÀ 2 HOẶC 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là số chính phương A = n2 (n ∈ N)
a)Xét các trường hợp:
n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .
b)Xét các trường hợp
n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.
n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1
= 4k(k+1)+1,
chia cho 4 dư 1(chia cho 8 cũng dư 1)
vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .
Chú ý: Từ bài toán trên ta thấy:
-Số chính phương chẵn chia hết cho 4
-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).
bạn à câu C hình như bạn viết thiếu đề
a
Gọi số chính phương đó là \(a^2\).Do a là số nguyên nên a có dạng \(3k+1;3k+2;3k\)
Với \(a=3k\) thì \(a^2=9k^2⋮3\)
Với \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
Với \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1
Vậy số chính phương chia 3 dư 0 hoặc 1
Gọi số chính phương đó là \(b^2\).Do b là số nguyên nên b có các dạng \(4k;4k+1;4k+2;4k+3\)
Tương tự xét như câu a nha.Ngại viết.
19 phút đã thôi qua nhưng không ai đưa ra đáp án . Vì thế mình sẽ công bố luôn:
Đáp án:
Chứng minh. Xét \(a^2\)là một số chính phương, với \(a\in Z\)
a) Số nguyên a chia hết cho 3 hoặc khi chia 3 dư 1 hoặc 2.
Nếu \(a\)\(⋮\)3 thì \(a^2\)\(⋮\)3
Nếu a chia cho 3 dư 1 hoặc 2 thì (a - 1) \(⋮\) 3 hoặc (a + 1) \(⋮\) 3. Suy ra (a - 1)(a + 1) \(⋮\)3 hay (\(a^2\)- 1) \(⋮\) 3.
b) Nếu a \(⋮\) 2 thì \(a^2\) \(⋮\) 4.
Nếu a không chia hết cho 2 thì (a - 1) \(⋮\) 2. Suy ra (a - 1) (a + 1) \(⋮\) 4 hay ( \(a^2\) - 1) \(⋮\)4.
Do đó \(a^2\) chia 4 dư 1 (ĐPCM)
CHTT
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
a=5n=> a^2=5^2.n^2 =25.n^2 hiển nhiên chia hết cho 25
a=5n+1=>a^2= 25n^2+10n+1 =5(5n^2+2n)+1 chia 5 dư 1
a=5n+2=> a^2=25n^2+20n+4=5(5n^2+4n)+4 chia 5 dư 4
a=5n+3=> a^2=25n^2+30n+9=5(5n^2+6n+1)+4 chia 5 dư 4
a=5n+4=>a^2=25n^2+40n+16=5(5n^2+8n+3)+1 chia 5 dư 1
=> dpcm
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
a) Số chia cho 4 có thể có dư là: 0; 1; 2; 3
Số chia cho 5 có thể có dư là: 0; 1; 2; 3; 4
Số chia cho 6 có thể có dư là: 0; 1; 2; 3; 4; 5
b) Dạng tổng quát của số chia hết cho 3 là: 3k
Dạng tổng quát của số chia hết cho 3 dư 1 là: 3k + 1
Dạng tổng quát của số chia hết cho 3 dư 2 là: 3k + 2
( Với k ∈ N)
Bài 1:
Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.
Ta có: (3x)2 = 9x2 chia hết cho 3
(3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1
(3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1
Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.
Bài 2 : Tương tự
Bài 1:
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.