cho abcd là hình vuông. trên bc lấy m, và trên tia đối của tiia cd lấy n sao cho cn=cm. chứng minh rằng dm vuông góc với bn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phạm Hồ Thanh Quang
- Kéo dài AM, cắt CD tại K.
- Theo đ/l menelaus:
trong tam giac BCN, đt AK cắt BC tại M, CN tại K và BN tại I. Nên:
MB/MC * KC/KN*IN/IB =1 (độ dài đại số)
+ MB/MC=-1/2
+KC/KN = 4/3 (dễ cm từ talet)
Nên IN/IB=-3/2
- Xét tam giác KMC và CMI:
Có: M chung
MC/MI = MK/CM
(MK/CM= căn 10 (1)
kẻ: IP vuông BC. Có: IP/CN = BI/BN=2/5 nên IP=2/5*a/2=a/5
tương tự, BP/BC=2/5 nên BP=2a/5
mà: BM=a/3 nên MP = a/15
do đó: MI = a(2/45)^(0.5)
MC=2a/3 nên MC/MI= căn 10 (2) )
(1) và (2) suy ra 2 tam giác đồng dạng
Do đó góc C = góc I = 90 độ
Do đó I thuộc đường tròn ngoại tiếp hv ABCD.
Cách giải của bạn có phải lớp 8 không bạn, thấy nó xa vời quá, nhưng bạn không có cách khác thì thôi, cám ơn bạn
Câu hỏi của Hồ Văn Đạt - Toán lớp 8 - Học toán với OnlineMath
Kéo dài AM cắt DC tại P
VÌ ABCD là hình vuông
=> Đặt: AB = BC = CD = DA = a
=> BM = \(\frac{a}{3}\); CN = \(\frac{a}{2}\)
=> MC = BC - BM = \(\frac{2a}{3}\)
+) \(\Delta\)ABM ~ \(\Delta\)PCM ( tự chứng minh )
=> \(\frac{AB}{PC}=\frac{BM}{MC}\)
=> \(\frac{a}{PC}=\frac{\frac{a}{3}}{\frac{2a}{3}}=\frac{1}{2}\)=> PC = 2a
=> PN = PC - NC = 2a - \(\frac{a}{2}\)= \(\frac{3a}{2}\)
+) \(\Delta\)ABI ~ \(\Delta\)PNI ( tự chứng minh )
=> \(\frac{AB}{PN}=\frac{AI}{IP}\)
=> \(\frac{AI}{PI}=\frac{a}{\frac{3a}{2}}=\frac{2}{3}\)(1)
mà \(AI+PI=AP=\sqrt{AD^2+DP^2}=\sqrt{a^2+9a^2}=\sqrt{10}a\)( DP = DC + CP = 3a) (2)
Từ (1); (2) => \(\hept{\begin{cases}PI=\frac{3\sqrt{10}}{5}\\AI=\frac{2\sqrt{10}}{5}\end{cases}}\)
=> \(\frac{IP}{CP}=\frac{\frac{3\sqrt{10}a}{5}}{2a}=\frac{3}{\sqrt{10}}\)
\(\frac{CP}{MP}=\frac{2a}{\sqrt{MC^2+CP^2}}=\frac{2a}{\frac{2\sqrt{10}}{3}a}=\frac{3}{\sqrt{10}}\)
Xét \(\Delta\)ICP và \(\Delta\)CMP có:
\(\frac{IP}{CP}=\frac{CP}{MP}\)( = \(\frac{3}{\sqrt{10}}\))
và ^IPC = ^CPM
=> \(\Delta\)ICP ~ \(\Delta\)CPM
=> ^CIP = ^MCP = 90\(^o\)
=> ^AIC = 90\(^o\)
Gọi O là giao điểm của AC và BD => O cách đều 4 điểm A, B, C, D (1)
Xét \(\Delta\)AIC vuông tại I có: O là trung điểm AC
=> O I = OA = OC (2)
Từ (1); (2)
=> O cách đều 5 điểm A, B, C, D, I