Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ hình chữ nhật NMCS ( như hình vẽ ).
Có \(\widehat{NMF}+\widehat{NMS}=\widehat{FMS}\)
\(\Rightarrow\widehat{FMS}=90^o+90^o=180^o\); hay F , M , S thẳng hàng
Tứ giác \(BFCS\)có 3 góc vuông nên là hình chữ nhật.
\(\Rightarrow CS=BF\)( 2 cạnh đối )
Lại có \(MS=NC\)
Do \(BFMN\)là hình chữ nhật nên \(BN=BF\Rightarrow BN=CG=CS\)
Đồng thời suy ra \(NC=BE\left(=BC-BN=AB-AE\right)\)
\(\Rightarrow BE=MS\)
Lại có \(BG=DS\) do \(BC+CG=DC+CS\)
Xét \(\Delta DSM\) và \(\Delta GBE\) có :
\(DS=BG\)
\(\widehat{DSM}=\widehat{GBE}=90^o\)
\(MS=BE\)
\(\Rightarrow\Delta DSM=\Delta GBE\left(c.g.c\right)\)
\(\Rightarrow DM=EG\)(2 cạnh tương ứng )
\(\widehat{SDM}=\widehat{BGE}\)( 2 góc tương ứng)
Gọi \(\hept{\begin{cases}DS\cap EG=\left\{O\right\}\\DM\cap EG=\left\{O'\right\}\end{cases}}\Rightarrow\widehat{O'DO}=\widehat{OGC}\)
Xét \(\Delta ODO'\) và \(\Delta OGC:\)
\(\widehat{O'DO}+\widehat{DO'O}+\widehat{DOO'}=\widehat{OGC}+\widehat{OCG}+\widehat{COG}=180^o\)
Mà \(\widehat{O'DO}=\widehat{OGC}\) và \(\widehat{DOO'}=\widehat{COG}\)( Đối đỉnh )
\(\Rightarrow\widehat{DO'O}=\widehat{OCG}\)
Mà \(\widehat{OCG}=90^o\Rightarrow\widehat{DO'O}=90^o\)
\(\Rightarrow DM\perp EG\)
Vậy ...
Câu hỏi của Hồ Văn Đạt - Toán lớp 8 - Học toán với OnlineMath
Phạm Hồ Thanh Quang
- Kéo dài AM, cắt CD tại K.
- Theo đ/l menelaus:
trong tam giac BCN, đt AK cắt BC tại M, CN tại K và BN tại I. Nên:
MB/MC * KC/KN*IN/IB =1 (độ dài đại số)
+ MB/MC=-1/2
+KC/KN = 4/3 (dễ cm từ talet)
Nên IN/IB=-3/2
- Xét tam giác KMC và CMI:
Có: M chung
MC/MI = MK/CM
(MK/CM= căn 10 (1)
kẻ: IP vuông BC. Có: IP/CN = BI/BN=2/5 nên IP=2/5*a/2=a/5
tương tự, BP/BC=2/5 nên BP=2a/5
mà: BM=a/3 nên MP = a/15
do đó: MI = a(2/45)^(0.5)
MC=2a/3 nên MC/MI= căn 10 (2) )
(1) và (2) suy ra 2 tam giác đồng dạng
Do đó góc C = góc I = 90 độ
Do đó I thuộc đường tròn ngoại tiếp hv ABCD.
Cách giải của bạn có phải lớp 8 không bạn, thấy nó xa vời quá, nhưng bạn không có cách khác thì thôi, cám ơn bạn