K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Ta có: \(x^3-y^3-x^2+2xy-y^2\)

\(=x^3-y^3-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

Thế vào, biến đổi rồi tính 

21 tháng 11 2017

Hình như đề bài sai ở đâu đó

Ta có: 

\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(x^2-2xy+y^2\right)+\left(x-y\right)3xy-\left(x-y\right)^2\)

\(=\left(x-y\right)^3+\left(x-y\right)3xy-\left(x-y\right)^2=5^3+5\times3\times6-5^2=190\)

23 tháng 7 2018

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

23 tháng 7 2018

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

18 tháng 11 2018

\(x^3-y^3-x^2+2xy-y^2\)

\(=\left(x^3-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+y^2-xy\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left[\left(x-y\right)^2+2xy-xy\right]-\left(x-y\right)^2\)

\(=\left(x-y\right)\left[\left(x-y\right)^2+xy\right]-\left(x-y\right)^2\)

\(=\left(-5\right)\left[\left(-5\right)^2-6\right]-\left(-5\right)^2\)

\(=\left(-5\right)\left(25-6\right)-25\)

\(=\left(-5\right).21-25\)

\(=-105-25=-130\)

18 tháng 11 2018

\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x-y\right)^2\)

\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-x+y\right)\)

Đến đây thì ko bk lm nx

23 tháng 8 2021

a) \(\left(3x-5\right)\left(3x+5\right)=9x^2-25\Leftrightarrow9x^2+15x-15x-25=9x^2-25\Leftrightarrow9x^2-25=9x^2-25\)(đúng)

b) \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\Leftrightarrow x^3-y^3=x^3+x^2y+xy^2-x^2y-xy^2-y^3\Leftrightarrow x^3-y^3=x^3-y^3\)(đúng)

c) \(x^2+y^2=\left(x+y\right)^2-2xy\Leftrightarrow x^2+y^2=x^2+y^2+2xy-2xy\Leftrightarrow x^2+y^2=x^2+y^2\)(đúng)

a: \(\left(3x-5\right)\left(3x+5\right)\)

\(=9x^2+15x-15x-25\)

\(=9x^2-25\)

b: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\)

c: \(\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2\)

a: Ta có: \(\left(3x-5\right)\left(3x+5\right)\)

\(=9x^2+15x-15x-25\)

\(=9x^2-25\)

b: Ta có: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\)

c: Ta có: \(\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2\)

18 tháng 2 2020

A = x^3 + 2xy(y + 1) + y^3 + x^2 + y^2 + xy + 9

= (x^3 + y^3) + 2xy(x + y) + 2xy + (x^2 - xy + y^2) + 9 

= (x + y)(x^2 - xy + y^2) + 2xy(x + y + 1) + (x^2 - xy + y^2) + 9

= (x + y + 1)(x^2 - xy + y^2) + 2xy(x + y + 1)  + 9

có x + y + 1 = 0

=> A = 0 + 0 + 9

A = 9

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)