Tim tất cả các số tự nhiên thỏa mãn tổng của nó với các chữ số cua nó bằng 2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho số cần tìm là ab
ab = 7x(a+b)
ax10+b=7xa+7xb
ax3=bx6(cùng bớt ax7 va b)
a=bx2(cùng chia hai ve cho 3)
số số cần tìm là
21,42,63,84
ĐS có 4 số
có gì
Có tất cả 4 số đó pạn đó là: 21 , 42 , 63 , 84
Ai tích mk mk tích lại cho
Bài 1: Để số tự nhiên cần tìm lớn nhất có thể thì tổng các chữ số của nó bé nhất có thể. Vậy số tự nhiên cần tìm có 4 chữ số.
Gọi số cần tìm là abcd. Theo đầu bài ta có:
abcd + a + b + c + d = 2015
=> ( a * 1000 + a ) + ( b * 100 + b ) + ( c * 10 + c ) + ( d + d ) = 2015
=> a * 1001 + ( b * 101 + c * 11 + d * 2 ) = 2015
=> 2015 / 1001 = a ( dư b * 101 + c * 11 + d * 2 )
Mà 2015 / 1001 = 2 ( dư 13 )
=> a = 2
=> b * 101 + ( c * 11 + d * 2 ) = 13 => 13 / 101 = b ( dư c * 11 + d * 2 )
Mà 13 / 101 = 0 ( dư 13 )
=> b = 0
=> c * 11 + d * 2 = 13 => 13 / 11 = c ( dư d * 2 )
Mà 13 / 11 = 1 ( dư 2 )
=> c = 1
=> d * 2 = 2 => d = 1
Vậy số cần tìm là 2011.
Bài giải
Cách 1:
Ta viết từ 00 đến 99 có 100 số mỗi số có 2 chữ số nên có 200 chữ số.
mỗi chữ số xuất hiện bằng nhau và có 200 : 10 = 10 (lần)
Mà 1+2+3+4+5+6+7+8+9= 45 chia hết cho 9 nên 45x20 cũng chia hết cho 9
Thêm số 100 tức là thêm 1 ở tổng các chữ số (chữ số 1 hàng trăm)
nên số 1234….99100 chia cho 9 dư 1
Cách 2:
tính tổng từ 1 đến 100 :
( 1+100) x (100:2) = 5050
5050 : 5+0+5+0 = 10 ; vậy 10 : 9 = 1 ( dư 1)
ĐS: 1
a) 102; 111; 120; 210; 201; 300
b) 4000 3100 3010 3001 2002 2020 2200 2011 2101 2110 1111 1003 1030 1300 1210 1201 1120 1102 1012 1021 v.v..
Nếu thiểu bổ sung hộ mk.
Các số đó là : 2004, 1986
Nếu thiếu số nào thì cho mk xin lỗi nha
~~ tk mk đi ~~ T_T
Xin các bn đó Y_Y
làm ơn đi các bn Y_Y
bn lam xong trc thi tat nhien la dc tk rui con gi!!!
lam gi ma cau ki the!!!
Lời giải:
Gọi số cần tìm là $A$. Tổng các chữ số của $A$ là $S(A)$.
Vì $A+S(A)=2004$ nên $A$ nhỏ hơn $2004$. Do đó, $A$ nhiều nhất 4 chữ số.
Nếu A có 1 chữ số thì $2A=2004\Rightarrow A=1002$ (vô lý)
Nếu A có 2 chữ số thì $A+S(A)$ lớn nhất bằng $99+9+9=117<2004$ (loại)
Nếu A có 3 chữ số thì $A+S(A)$ lớn nhất bằng $999+9+9+9=1026<2004$ (loại)
Nếu A có 4 chữ số. Gọi $A=\overline{abcd}$.
Ta có: $\overline{abcd}+a+b+c+d=2004$
$\Leftrightarrow 1001a+101b+11c+2d=2004$
$\Rightarrow 1001a\leq 2004\Rightarrow a\leq 2$
Xét các TH sau:
TH1: $a=1$ thì $101b+11c+2d=1003$
$\Rightarrow 101b=1003-11c-2d\geq 1003-11.9-2.9=886$
$\Rightarrow b\geq 9$
$\Rightarrow b=9$.
$11c+2d=94$
$11c=94-2d\geq 94-2.9=76\Rightarrow c\geq 7$
Mà $c$ chẵn nên $c=8$. Kéo theo $d=3$
TH2: $a=2$ thì $101b+11c+2d=2$
$\Rightarrow b=0; c=0; d=1$
Vậy số cần tìm là $1983$ hoặc $2001$
Lời giải:
Gọi số cần tìm là AA. Tổng các chữ số của AA là S(A)S(A).
Vì A+S(A)=2004A+S(A)=2004 nên AA nhỏ hơn 20042004. Do đó, AA nhiều nhất 4 chữ số.
Nếu A có 1 chữ số thì 2A=2004⇒A=10022A=2004⇒A=1002 (vô lý)
Nếu A có 2 chữ số thì A+S(A)A+S(A) lớn nhất bằng 99+9+9=117<200499+9+9=117<2004 (loại)
Nếu A có 3 chữ số thì A+S(A)A+S(A) lớn nhất bằng 999+9+9+9=1026<2004999+9+9+9=1026<2004 (loại)
Nếu A có 4 chữ số. Gọi A=¯¯¯¯¯¯¯¯¯¯abcdA=abcd¯.
Ta có: ¯¯¯¯¯¯¯¯¯¯abcd+a+b+c+d=2004abcd¯+a+b+c+d=2004
⇔1001a+101b+11c+2d=2004⇔1001a+101b+11c+2d=2004
⇒1001a≤2004⇒a≤2⇒1001a≤2004⇒a≤2
Xét các TH sau:
TH1: a=1a=1 thì 101b+11c+2d=1003101b+11c+2d=1003
⇒101b=1003−11c−2d≥1003−11.9−2.9=886⇒101b=1003−11c−2d≥1003−11.9−2.9=886
⇒b≥9⇒b≥9
⇒b=9⇒b=9.
11c+2d=9411c+2d=94
11c=94−2d≥94−2.9=76⇒c≥711c=94−2d≥94−2.9=76⇒c≥7
Mà cc chẵn nên c=8c=8. Kéo theo d=3d=3
TH2: a=2a=2 thì 101b+11c+2d=2101b+11c+2d=2
⇒b=0;c=0;d=1⇒b=0;c=0;d=1
Vậy số cần tìm là 19831983 hoặc 2001