chứng minh rằng:nếu ƯCLN(n,6)=1 thì n2-1 chia hết cho 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a chia hết cho b
nên a=bk
hay \(b=\dfrac{a}{k}\)
Ta có: b chia hết cho c
nên b=cx
\(\Leftrightarrow cx=\dfrac{a}{k}\)
hay a=cxk
Vậy: a chia hết cho c
\(a⋮b\Rightarrow a=b.n\left(n\in Z\right)\left(1\right)\)
\(b⋮c\Rightarrow b=c.m\left(m\in Z\right)\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow a=c.m.n⋮c\)( do \(m,n\in Z\))
`(n^2+3n+1)^2-1`
`=(n^2+3n+1)-1^2`
`=(n^2+3n+1+1)(n^2+3n+1-1)`
`=(n^2+3n+2)(n^2+3n)`
`=(n+1)(n+2)n(n+3)`
`=n(n+1)(n+2)(n+3)` là tích của 4 số tự nhiên liên tiếp.
`=> n(n+1)(n+2)(n+3) vdots 24`
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Ta thấy: (n,6)=1
=> n lẻ, đặt: n=2k+1
=> (n-1)(n+1)=(2k+1-1)(2k+1+1)=2k.2(k+1)=4k(k+1)
Ta thấy: k(k+1) là tích 2 số nguyên liên tiếp => (n-1)(n+1) \(⋮\)8
Do (n,6)=1
=> n không chia hết cho 3:
=> n=3k+1 hoặc n=3k-1
Nếu n=3k-1 => n+1 \(⋮\)3
Nếu n=3k+1 => n-1\(⋮\)3
Vậy (n-1)(n+1) \(⋮\)3 với mọi n
Mà (3,8)=1
=> (n-1)(n+1)\(⋮\)3.8=24 (ĐPCM)
Do UCLN(n,6) = 1 nên n không chia hết cho 2 và 3.
n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể có dạng 3k + 1 hoặc 3k + 2
Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j, ta có n = 3.2j + 1 = 6j + 1
Khi đó \(n^2-1=\left(6j+1\right)^2-1=36j^2+12j=12j\left(3j+1\right)\)
Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+1\right)=24t\left(6t+1\right)⋮24\)
Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+4\right)=24\left(2t+1\right)\left(3t+2\right)⋮24\)
Vậy \(n^2-1⋮24\)
Nếu \(n=3k+2\) thì k là số lẻ. Đặt \(k=2j+1\Rightarrow n=3\left(2j+1\right)+2=6j+5\)
\(n^2-1=\left(6j+5\right)^2-1=36j^2+60j+24=12j\left(3j+5\right)+24\)
Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+5\right)=24t\left(6t+5\right)⋮24\)
Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+8\right)=24\left(2t+1\right)\left(3t+4\right)⋮24\)
Vậy \(n^2-1⋮24\)
Tóm lại , khi UCLN(n ; 6) = 1 thì \(n^2-1⋮6\)