K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2020

Áp dụng ĐL pi - ta - go đảo :

\(AB^2+BC^2=AC^2\)

\(< =>4.5^2+6^2=7.5^2\)

Do \(4.5^2+6^2=7.5^2\)đúng 

=>ĐPCM

13 tháng 3 2018

Áp dụng định lí Py-ta-go,ta có:

BC2=AC2+AB2

      =4,52+62

      =20,25+36

      =56,25

\(\sqrt{56,25}\)=7,5

Suy ra tam giác ABC là tam giác vuông.

17 tháng 1 2016

Ta có: 20,25+36=56,25

=>4,52+62=7,52

Hay AB2+BC2=AC2

=> Tam giác ABC vuông tại B

17 tháng 1 2016

Ta có:

AC2 = (7,5)2 = 56,25 (cm) (1)

BC2 = 62 = 36 (cm) 

AB2 = (4,5)2 = 20,25 (cm)

=> BC2 + AB2 = 36 + 20,25 = 56,25 (cm) (2)

Từ (1) và (2) => AC2 = BC2 + AB2

Theo đ/lí Pi-ta-go đảo

=> Tam giác ABC vuông tại B.

 

18 tháng 9 2018

Ta có:

 

A B 2 = 6 2 = 36 A C 2 = 4 , 52 = 20 , 25 B C 2 = 7 , 52 = 56 , 25

 

Vì A B 2 + A C 2  = 36 + 20,25 = 56,25 =  B C 2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

16 tháng 1 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: AB2 + AC2 = 62 + 4,52 = 7,52 = BC2

nên tam giác ABC vuông tại A. (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

=> ∠B = 37o

=> ∠C = 90o - ∠B = 90o - 37o = 53o

Mặt khác trong tam giác ABC vuông tại A, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

=> AH = 3,6 cm

8 tháng 1 2022

TK

Diện tích tam giác là:
   (4,5 x 6)/2=13,5 cm
Chiều cao AH là:
(13,5 x 2)/7,5=3,6 cm

12 tháng 1 2016

bạn giải chi tiết đi

 

Giải

Độ dài chiều cao AH là :

( 4,5 + 6 ) : 2 = 5,25 ( cm )

Đáp số : 5,25 cm

Mong bạn k mk 

9 tháng 1 2017

yến nhi libra virgo hotgirl sakura trả lời chính xác

quá đúng...!!

tk mk nha

thanks

a) Ta có: \(\dfrac{AN}{AB}=\dfrac{3}{6}=\dfrac{1}{2}\)

\(\dfrac{AM}{AC}=\dfrac{4.5}{9}=\dfrac{1}{2}\)

Do đó: \(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)\(\left(=\dfrac{1}{2}\right)\)

Xét ΔANM và ΔABC có 

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔANM\(\sim\)ΔABC(c-g-c)