Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py-ta-go,ta có:
BC2=AC2+AB2
=4,52+62
=20,25+36
=56,25
mà\(\sqrt{56,25}\)=7,5
Suy ra tam giác ABC là tam giác vuông.
Áp dụng ĐL pi - ta - go đảo :
\(AB^2+BC^2=AC^2\)
\(< =>4.5^2+6^2=7.5^2\)
Do \(4.5^2+6^2=7.5^2\)đúng
=>ĐPCM
a: \(BC^2=7.5^2=56.25\)
\(AB^2+AC^2=4.5^2+6^2=56.25\)
Do đó: \(BC^2=AB^2+AC^2\)
b: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Xét ΔMHC và ΔMKB có
MH=MK
\(\widehat{HMC}=\widehat{KMB}\)
MC=MB
Do đó: ΔMHC=ΔMKB
a: \(AB=\sqrt{AH^2+HB^2}=7.5\left(cm\right)\)
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
BC=HB+HC=12,5cm
b: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Ta có:
\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)
\(BC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)
Áp dụng định lý Pytago đảo ta có:
AB2+AC2=82+62=100
mà 102=100
⇒82+62=102hay AB2+AC2=BC2
vậy ABC là tam giác vuông tại A
Ta có: 20,25+36=56,25
=>4,52+62=7,52
Hay AB2+BC2=AC2
=> Tam giác ABC vuông tại B
Ta có:
AC2 = (7,5)2 = 56,25 (cm) (1)
BC2 = 62 = 36 (cm)
AB2 = (4,5)2 = 20,25 (cm)
=> BC2 + AB2 = 36 + 20,25 = 56,25 (cm) (2)
Từ (1) và (2) => AC2 = BC2 + AB2
Theo đ/lí Pi-ta-go đảo
=> Tam giác ABC vuông tại B.