K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

giải toán , trước đây mua 15 quyển vở phải trả 105000 đồng,hiện nay giá bán mỗi quyển vở giảm đi 2000 đồng, hỏi với 105000 đồng , hiện nay có thể mua được bao nhiêu quyển vở như thế

4 tháng 11 2017

\(\left(a+b\right)\left(a+2b\right)\left(a+3b\right)\left(a+4b\right)+b^4\)

\(=\left(a+b\right)\left(a+4b\right)\left(a+2b\right)\left(a+3b\right)+b^4\)

\(=\left(a^2+5ab+4b^2\right)\left(a^2+5ab+6b^2\right)+b^4\)

Đặt\(a^2+5ab+5b^2=t\)

Biểu thức đã cho bằng\(\left(t-b^2\right)\left(t+b^2\right)+b^4\)

                                     \(=t^2-b^4+b^4=t^2\)

\(a;b\in Z\Rightarrow t\in Z\Rightarrow t^2\)là số chính phương

19 tháng 4 2020

( a + b ) ( a + 2b ) ( a + 3b ) ( a + 4b ) + b4 

= ( a2 + 5ab + 4b2 ) ( a2 + 5ab + 6b2 ) + b4

= ( a2 + 5ab + 5b2 - b2 ) ( a2 + 5ab + 5b2 + b2 ) + b4

= ( a2 + 5ab + 5b2 ) - b4 + b4

= a2 + 5ab + 5b2 là số chính phương

a: \(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+16\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+121\)

\(=\left(a^2+8a+11\right)^2\)

b: \(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^4\)

\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^4\)

\(=\left(a^2-5ab\right)^2+10b^2\left(a^2-5ab\right)+24b^4+b^4\)

\(=\left(a^2-5ab\right)^2+2\cdot\left(a^2-5ab\right)\cdot5b^2+\left(5b^2\right)^2\)

\(=\left(a^2-5ab+5b^2\right)^2\)