K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Có 2a^2 + a = 3b^2 + b

<=> 2a^2 + a - 3b^2 - b = 0

<=> 3a^2 + a - 3b^2 - b = a^2

Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)

Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )

 => a-b chia hết cho d

     3a+3b+1 chia hết cho d

     a^2 chia hết cho d^2

=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d

=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d

=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )

=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)

Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương

https://olm.vn/hoi-dap/detail/92192540983.html

Câu hỏi của La Văn Lết - Toán lớp 8

Bạn tham khảo ở đây nhé

8 tháng 4 2019

Câu hỏi của La Văn Lết - Toán lớp 8 - Học toán với OnlineMath

Em thma khảo bài làm tại link này nhé!

10 tháng 11 2016

Câu 1:

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2+a-3b^2-b=0\Rightarrow3\left(a^2-b^2\right)+\left(a-b\right)=a^2\)

\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\)

Gọi \(ƯCLN\)\(\left(a-b;3a+3b+1\right)=d\)

=> \(a-b⋮d;3a+3b+1⋮d\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\left(1\right)\)

Mà ta lại có: \(3\left(a-b\right)+\left(3a+3b+1\right)⋮d\Rightarrow6a +1⋮d\left(2\right)\)

Từ 1 và 2 => \(d=1\) => \(a-b\)\(3a+3b+1\) là 2 số nguyên tố cùng nhau.

Và đồng thời \(3a+3b+1>a-b\Rightarrow\begin{cases}3a+3b+1=a^2\\a-b=1^2\end{cases}\)

Vậy \(3a+3b+1\)\(a-b\) đều là các số chính phương.

Câu 2:

Ta có: \(6x+5y+18=2xy\Rightarrow5y+18=2xy-6x=2x\left(y-3\right)\Rightarrow2x=\frac{5y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)

Do \(x;y\in Z\Rightarrow\)\(\frac{33}{y-3}\in Z\Rightarrow33⋮y-3\Rightarrow y-3\inƯ\left(33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)

Ta có bảng sau:

y-31-13-311-1133-33
2x-533-3311-113-31-1
2x38-2816-68264
x19-148-34132
y426014-936-30

 

Vậy \(\left(x;y\right)=\left(19;4\right);\left(-14;2\right);\left(8;6\right);\left(-3;0\right);\left(4;14\right);\left(1;-9\right);\left(3;36\right);\left(2;-30\right)\)

 

 

 

10 tháng 11 2016

Bạn nên ấn cái này để dễ nhìn hơn

Đại số lớp 8

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Ta có \(2a^2+a=3b^2+b\)

\(\Leftrightarrow 3a^2+a=3b^2+b+a^2\)

\(\Leftrightarrow 3(a^2-b^2)+(a-b)=a^2\)

\(\Leftrightarrow (a-b)(3a+3b+1)=a^2\)

Gọi ƯCLN \((a-b, 3a+3b+1)=t\)

\(\Rightarrow \left\{\begin{matrix} a-b\vdots t\rightarrow 3a-3b\vdots t\\ 3a+3b+1\vdots t\end{matrix}\right.\) (*)

Cộng hai vế suy ra \(6a+1\vdots t\) (1)

Mặt khác từ (*) suy ra \(\Rightarrow a^2=(a-b)(3a+3b+1)\vdots t^2\)

\(\Rightarrow a\vdots t\) (2)

Từ (1);(2) suy ra \(1\vdots t\Leftrightarrow t=1\)

Do đó $a-b,3a+3b+1$ nguyên tố cùng nhau

Mà tích hai số là số chính phương nên bản thân mỗi số đó là một số chính phương.

Ta có đpcm.

27 tháng 3 2018

sao từ (*) lại suy ra a^2=(a-b)(3a+3b+1) chia hết cho t^2