K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2015

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)

\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)

\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\) 

\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\) 

                  \(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)

                   \(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\) 

                              \(\frac{1}{x+3}=1-\frac{2001}{2002}\) 

                               \(\frac{1}{x+3}=\frac{1}{2002}\) 

                                \(\frac{1}{x}=\frac{1}{2002-3}\) 

                                 \(\frac{1}{x}=\frac{1}{1999}\)

Vậy x = 1999

3 tháng 7 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{667}{668}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{667}{668}\)

\(1-\frac{1}{x+1}=\frac{667}{668}\)

\(\frac{1}{x+1}=1-\frac{667}{668}\)

\(\frac{1}{x+1}=\frac{1}{668}\)

\(\Rightarrow x+1=668\)

x = 667

3 tháng 7 2018

a) 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/x.(x+1) = 667/668

=>1/1-1/2+1/2-1/3+1/3-1/4+.......+1/x-1/x+1=667/668

=>1/1-1/x+1=667/668

=>1/x+1=1/1-667/668

=>1/x+1=1/668

=>x=667

10 tháng 11 2016

Đặt vế trái phương trình là A

\(3A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\)

\(3A=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+\frac{\left(x+3\right)-x}{x\left(x+3\right)}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\)

\(3A=1-\frac{1}{x+3}=\frac{x+2}{x+3}\Rightarrow A=\frac{x+2}{3\left(x+3\right)}\)

\(\Rightarrow\frac{x+2}{3\left(x+3\right)}=\frac{667}{2002}\Rightarrow2002\left(x+2\right)=3.667.\left(x+3\right)\)

\(\Leftrightarrow2002x+4004=2001x+6003\Leftrightarrow x=1999\)

14 tháng 5 2016

đặt VT là A ta có:

\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)

\(3A=1-\frac{1}{x+3}\)

\(A=\left(1-\frac{1}{x+3}\right):3\)

thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{18}{19}\)

\(\frac{1}{x+3}=\frac{1}{19}\)

=>x+3=19

=>x=16

15 tháng 5 2016

có thể giải cụ thể ra được ko

1/ 1.4+ 1/ 4.7+ 1/ 7.10+....+1/ x.( x+ 3)= 672/ 2017

(3/1.4+3/4.7+3/7.10+...+ 3/x(x+3)).1/3=672/2017

(1/1-1/4+1/4-1/7+1/7-1/10+.....+(x+3)-x/x.(x+3)).1/3=672/2017

(1/1-1/(x+3)).1/3=672/2017

1/1-1/(x+3)= 672/2017:1/3

1/1-1/(x+3) = 2016/2017

1/(x+3)=1/1-2016/2017

1/(x+3)=1/2017

x+3=2017

x= 2017-3

x= 2014

MIK CHẮC CHẮN 100% LÀ ĐÚNG, DẠNG TOÁN NÀY MIK LM NHIỀU R

HOK TỐT 

27 tháng 4 2019

\(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\cdot\left(x+3\right)}=\frac{672}{2017}\)

\(\Rightarrow\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\cdot\left(x+3\right)}\right)=\frac{672}{2017}\)

\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{672}{2017}\)

\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{x+3}\right)=\frac{672}{2017}\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}:\frac{1}{3}\)

\(\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}\cdot3=\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+3}=\frac{2017}{2017}-\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=\frac{1}{2017}\)

\(\Rightarrow x+3=2017\Rightarrow x=2017-3\Rightarrow x=2014\)

4 tháng 7 2018

Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)

\(3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{\left(x+3\right)}\right)=3\cdot\frac{49}{148}\)

\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\left(x+3\right)}=\frac{147}{148}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{147}{148}\)

\(1-\frac{1}{x-1}=\frac{147}{148}\)

\(\frac{1}{x-1}=1-\frac{147}{148}\)

\(\frac{1}{x-1}=\frac{1}{148}\)

\(\Rightarrow x-1=148\)

\(\Leftrightarrow x=148+1\)

\(\Leftrightarrow x=149\)

Vậy x=149

4 tháng 7 2018

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{49}{148}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{49}{148}\)

\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{49}{148}\)

\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{49}{148}\)

\(\Rightarrow1-\frac{1}{x+3}=\frac{49}{148}:\frac{1}{3}\)

\(\Rightarrow1-\frac{1}{x+3}=\frac{147}{148}\)

\(\Rightarrow\frac{1}{x+3}=1-\frac{147}{148}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{148}\)

\(\Rightarrow x+3=148\)

\(\Rightarrow x=148-3\)

\(\Rightarrow x=145\)

Vậy x = 145

_Chúc bạn học tốt_

8 tháng 4 2017

x=2009