Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=1-\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
\(\frac{1}{x}=\frac{1}{2002-3}\)
\(\frac{1}{x}=\frac{1}{1999}\)
Vậy x = 1999
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)
\(3A=1-\frac{1}{x+3}\)
\(A=\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16
\(\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)
\(\frac{1}{3}\times\frac{x+3-1}{x+3}=\frac{6}{19}\)
\(\frac{x+3-1}{x+3}=\frac{6}{19}\div\frac{1}{3}\)
\(\frac{x+2}{x+3}=\frac{18}{19}\)
x = 16
3. ( 1/1.4 +1/4.7 +1/7.10 +...+ 1/x.(x+3)
3/1.4 +1/4.7+1/7.10 + ...+ 3/ x . (x+3)
1/1 - 1/4 + 1/4 - 1/6 + 1/7 - 1/10 + ...+ 1/x-1/x+3
1/1 - 1/x+3
x+3/x+3 - 1/x+3
x+2/x+3
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{x\left(x+3\right)}=\frac{18}{19}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{18}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
...............
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{6}{19}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\)
\(3A=1-\frac{1}{x+3}\)
\(\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16
1/3.(1-1/4+1/4-1/7+......+1/x-1/(x+3)=6/19
1/3.(1-1/x+3)=6/19
1-1/x+3=6/19:1/3
1-1/x+3=18/19
1/x+3=1-18/19
1/x+3=1/19
=> x+3=19
=>x=19-3
x=16
Đặt biểu thức là A, ta có:
3A=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{x\left(x+3\right)}\)
3A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\)
3A=1-\(\frac{1}{x+3}\)
A=\(\frac{1}{3}-\frac{3}{x+3}\)
=>\(\frac{1}{3}-\frac{3}{x+3}\) =\(\frac{6}{19}\) =>x=168
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{97\cdot100}=\frac{0,33\cdot x}{2009}\cdot3\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}=\frac{0,99\cdot x}{2009}\)
\(\frac{100}{100}-\frac{1}{100}=\frac{0,99x}{2009}\)
\(\frac{99}{100}=\frac{0,99x}{2009}\)
=>0,99x*100=2009*99
99x=2009*99
=>x=2009
Vậy x=2009
\(0,33\cdot\frac{x}{2009}\) hay \(\frac{0,33\cdot x}{2009}\)
1/ 1.4+ 1/ 4.7+ 1/ 7.10+....+1/ x.( x+ 3)= 672/ 2017
(3/1.4+3/4.7+3/7.10+...+ 3/x(x+3)).1/3=672/2017
(1/1-1/4+1/4-1/7+1/7-1/10+.....+(x+3)-x/x.(x+3)).1/3=672/2017
(1/1-1/(x+3)).1/3=672/2017
1/1-1/(x+3)= 672/2017:1/3
1/1-1/(x+3) = 2016/2017
1/(x+3)=1/1-2016/2017
1/(x+3)=1/2017
x+3=2017
x= 2017-3
x= 2014
MIK CHẮC CHẮN 100% LÀ ĐÚNG, DẠNG TOÁN NÀY MIK LM NHIỀU R
HOK TỐT
\(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\cdot\left(x+3\right)}=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\cdot\left(x+3\right)}\right)=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{x+3}\right)=\frac{672}{2017}\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}\cdot3=\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+3}=\frac{2017}{2017}-\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=\frac{1}{2017}\)
\(\Rightarrow x+3=2017\Rightarrow x=2017-3\Rightarrow x=2014\)