K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

ta có: 4n^3 - 4n^2 - n + 4 chia hết cho 2n + 1

=> 4n^3 + 2n^2 - 6n^2 - 3n + 2n + 1 + 3 chia hết cho 2n + 1

2n^2.(2n+1) - 3n.(2n+1) + (2n+1) + 3 chia hết cho 2n + 1

(2n+1).(2n^2-3n+1) + 3 chia hết cho 2n + 1

mà (2n+1).(2n^2-3n+1 chia hết cho 2n + 1

=> 3 chia hết cho 2n + 1

=>...

bn tự làm tiếp nha

14 tháng 3 2016

\(y=\frac{1}{x^2+\sqrt{x}}\)

7 tháng 8 2017

a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)

b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Tới đây lập bảng tìm n.

1 tháng 5 2017

A = \(\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{2n+3+3n-5+4n-5}{n-3}=\frac{9n-7}{n-3}=\frac{9n-27+20}{n-3}=\frac{9\left(n-3\right)+20}{n-3}=9+\frac{20}{n-3}\)

a, Để A nguyên <=> n - 3 thuộc Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}

n-31-12-24-45-510-1020-20
n42517-18-213-723-17

Vậy...

b, Để A tối giản <=> UCLN(20,n-3) = 1

=> n-3 không chia hết cho 20

=> n-3 khác 20k (k thuộc Z)

=> n khác 20k + 3

Vậy.....

1 tháng 5 2017

a) Ta có : 

\(A=\frac{2n+3}{n-3}+\frac{3n-5}{n-3}+\frac{4n-5}{n-3}=\frac{\left(2n+3\right)+\left(3n-5\right)+\left(4n-5\right)}{n-3}=\frac{7n-7}{n-3}=\frac{7n-21+14}{n-3}=\frac{7\left(n-3\right)+14}{n-3}=7+\frac{14}{n-3}\)để A là số nguyên thì \(\frac{14}{n-3}\)là số nguyên

\(\Rightarrow14\)\(⋮\)\(n-3\)

\(\Rightarrow\)n - 3 \(\in\)Ư ( 14 ) = { 1 ; -1 ; 2 ; -2 ; 7 ; -7 ; 14 ; -14 }

lập bảng ta có :

n - 3 1-12-27-714-14
n425110-417-11

b) Để A là phân số tối giản \(\Leftrightarrow\)ƯCLN ( 7n - 7 ; n - 3 ) = 1 \(\Leftrightarrow\)ƯCLN ( 14 ; n - 3 ) = 1

\(\Leftrightarrow\)n - 3 không chia hết cho 14

\(\Rightarrow\)n - 3 \(\ne\)14k

\(\Rightarrow\)\(\ne\)14k + 3

27 tháng 8 2017

13 tháng 2 2019

Ở đây, ta có thực hiện đặt phép chia như câu 1 để tìm số dư và tìm điều kiện giá trị của n để thỏa mãn đề bài. Nhưng bài này ta làm cách biến đội như sau:

17 tháng 2 2019

A = \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)

   = \(\frac{2n+1+3n-5-4n+5}{n-3}\)

   = \(\frac{n+1}{n-3}\)=  \(\frac{\left(n-3\right)+4}{n-3}\)\(1+\frac{4}{n-3}\)

Để A nhận giá trị nguyên <=> \(1+\frac{4}{n-3}\inℤ\)<=> \(\frac{4}{n-3}\inℤ\)<=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

Ta lập bảng giá trị:

n-3-4-2-1124
n-112457

Vậy...