Cho tam giác ABC có P nằm ở miền trong tam giác sao cho góc PAC = góc PBC. Gọi M,N là hình chiếu của P trên BC, AC. CMR: Nếu D là trung điểm AB thì DM=DN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC \) có : + M là trung điểm của AB
+ P là trung điểm của BC
=> MP là đường TB
=> MP // AC
\(\Rightarrow\frac{MP}{AC}=\frac{BP}{BC}\)( định lí Talet ) ( 1 )
\(\Delta ABC\)có : + N là trung điểm củ AC
+ P là trung điểm của PC
=> NP là đường TB
=> NP // AB
\(\Rightarrow\frac{NP}{AB}=\frac{CP}{CB}\)( định lí Talet ) ( 2 )
Mà BP = CP ( P là trung điểm BC ) ( 3 )
Từ (1)(2)(3) => \(\frac{MP}{AC}=\frac{NP}{AB}\)
\(\Rightarrow\frac{PM}{PN}=\frac{AC}{AB}\Rightarrow\frac{DM}{DN}=\frac{PM}{PN}\)
Mà \(\frac{DM}{DN}=\frac{AC}{AB}\left(gt\right)\)
=> PD là đường phân giác \(\widehat{MPN}\)