Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có: AB = AC `=>` Tam giác ABC cân
Xét tam giác ABD và tam giác ACD, có:
AB = AC ( gt )
BD = CD ( gt )
AD: cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.c.c )
Xét tam giác ABC có AB = AC `=>` Tam giác ABC cân
Mà AD là đường trung tuyến `=>` AD cũng là đường cao
`=>` AD vuông góc BC
2. Xét tam giác ADC và tam giác EDB, có:
BD = CD ( gt)
\(\widehat{BDE}=\widehat{ADC}\) ( đối đỉnh )
AD = ED ( gt )
Vậy tam giác ADC = tam giác EDB ( c.g.c )
`=>` \(\widehat{DAC}=\widehat{DEB}\)
`=>` AC // BE ( so le trong )
3. Xét tam giác AMD và tam giác AND, có:
AM = AN ( gt )
\(\widehat{MAD}=\widehat{NAD}\) (tam giác ABC cân, AD là đường cao cũng là phân giác )
AD: chung
Vậy tam giác AMD = tam giác AND ( c.g.c )
\(\Rightarrow\widehat{AMD}=\widehat{AND}=90^o\)
\(\Rightarrow DN\perp AC\) (1)
Ta có: \(DK\perp BE\) ( gt ) (2)
mà BE // AC (3)
(1);(2);(3) `=>` N,D,K thẳng hàng