bài toán này làm như thế nào?
3x+2y,7y+5z và x-y+z= 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
3x= 2y => x/2=y/3=> x/10= y/15
7y=5z=> y/5=z/7=> y/15=z/21
Từ 2 điều trên => x/10=y/15=z/21
Sau đó áp dụng t/c của dãy tỉ số = nhau là đk
+) \(3x=2y\)\(=>\frac{x}{2}=\frac{y}{3}\)(1)
+) \(7y=5z=>\frac{y}{5}=\frac{z}{7}\)(2)
Từ (1) và (2) suy ra: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Mà: x - y + z = 32
Theo tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2.\)
Nếu: +) \(\frac{x}{10}=2\Rightarrow x=10.2=20\)
+) \(\frac{y}{15}=2\Rightarrow y=15.2=30\)
+) \(\frac{z}{21}=2\Rightarrow z=21.2=42\)
Vậy, x = 20; y = 30; z = 42.
\(\left\{{}\begin{matrix}3x=2y\\7y=5z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Bài làm
Vì 3x = 2y
=> \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\) (1)
Vì 7y = 5z
=> \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{21}=\frac{z}{15}\) (2)
Từ (1) và (2) => \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}=\frac{x-y+z}{14-21+15}=\frac{32}{8}=4\)
Do đó: \(\hept{\begin{cases}\frac{x}{14}=4\\\frac{y}{21}=4\\\frac{z}{15}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=56\\y=84\\z=60\end{cases}}\)
Vậy x = 56
y = 84
z = 60
# Chúc bạn học tốt #
3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra x/10=2 => x=20
y/15=2 =>y=30
z/21=2 => z=42
áp dụng như bài vừa nãy, nhưng biến đổi đẳng thức 3x = 2y,... thành tỉ lệ thức rùi mới làm
Ta có :
\(3x=2y;7y=5z\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5};\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Ta lại có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)và x-y+z=32
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=15.2=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
\(3x=2y;7y=5z\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\\\dfrac{y}{15}=2\\\dfrac{z}{21}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=30\\z=42\end{matrix}\right.\)
Vậy ..
Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42
3x = 2y => x = (2/3)y (1)
7y = 5z => z =(7/5)y (2)
thay (1) và (2) vào x - y + z = 32 ta được :
(2/3)y - y + (7/5)y = 32
=> (2/3 -1 + 7/5)y = 32
=> (16/15)y = 32
=> y = 30
thay y = 30 vào (1) và (2) ta được x = 20 và z = 42
kl: x = 20 , y = 30 ,z = 42