Tìm tất cả n \(\in\) Z để P=1999n2 +1997n+30 chia hết cho 6n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vô câu hỏi tương tự và xem ở câu hỏi của Nguyễn Ngọc Minh nha
Mình vừa trả lời ở đó xong
Hok tốt
Lời giải:
$2n^2-n+7\vdots n-2$
$\Leftrightarrow 2n(n-2)+3(n-2)+13\vdots n-2$
$\Leftrightarrow 13\vdots n-2$
$\Leftrightarrow n-2\in\left\{\pm 1; \pm 13\right\}$
$\Leftrightarrow n\in\left\{3; 1; 15; -11\right\}$
a) ta có: n+2 chia hết cho n-3
=>(n-3)+5 chia hết cho n-3
Mà n-3 chia hết cho n-3
=>5 chia hết cho n-3
=> n-3 thuộc Ư(5)={1;5;-1;-5}
=> n thuộc {4;8;2;-2}
b) Ta có: 6n+1 chia hết cho 3n-1
=>(6n-2)+2+1 chia hết cho 3n-1
=>2(3n-1) +3 chia hết cho 3n-1
Mà 2(3n-1) chia hết cho 3n-1
=> 3 chia hết cho 3n-1
=> 3n-1 thuộc Ư(3)={1;3;-1;-3}
=> 3n thuộc {2;4;0;-2}
=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}
Mà n thuộc Z
=>n=0
6n+3 chia hết cho 3n+6
=>2(3n+6)-9 chia hết cho 3n+6
=>9 chia hết cho 3n+6
=>3n+6 thuộc Ư(9)={1;-1;3;-3;9;-9}
=>n thuộc { rỗng }
à ko rỗng bạn ạ
xét 3x+6=3
3x+6=-3
3x+6=9
3x+6=-9 nhé hjhj
????????????
Biểu diễn \(P=\left(1998n^2+1998n\right)+\left(n^2-n+30\right)..\)
Vì \(\left(1998n^2+1998n\right)⋮6n;....P⋮6n\)\(\Leftrightarrow\left(n^2-n+30\right)⋮6n\)
Xét 2 trường hợp
. Nếu \(n>0:\)
Ta có \(\left(n^2-n\right)⋮n\)\(\Rightarrow30⋮n\)(1)
Lại có \(30⋮6\Rightarrow\left(n^2-n\right)⋮6\)
Mà \(n^2-n=n\left(n-1\right)⋮2\Rightarrow n \left(n-1\right)⋮3\)
\(\Rightarrow n=3k\)hoặc \(n=3k+1\)
Vậy \(P⋮6n\Leftrightarrow n=3k\)hoặc \(n=3k+1\)và \(30⋮n\)(theo (1) )
\(\Rightarrow n\in\left\{1;3;10;30\right\}.\)
. Nếu \(n< 0\)Đặt \(n=-m\)với \(m>0\)
Làm tương tự, ta có \(m\in\left\{2;5;6;15\right\}\Rightarrow n\in\left\{-2;-5;-6;-15\right\}.\)