K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2015

6n+3 chia hết cho 3n+6

=>2(3n+6)-9 chia hết cho 3n+6

=>9 chia hết cho 3n+6

=>3n+6 thuộc Ư(9)={1;-1;3;-3;9;-9}

=>n thuộc { rỗng }

25 tháng 11 2015

à ko rỗng bạn ạ 

xét 3x+6=3

3x+6=-3

3x+6=9

3x+6=-9 nhé hjhj

16 tháng 1 2016

a) ta có: n+2 chia hết cho n-3

=>(n-3)+5 chia hết cho n-3

Mà n-3 chia hết cho n-3

=>5 chia hết cho n-3

=> n-3 thuộc Ư(5)={1;5;-1;-5}

=> n thuộc {4;8;2;-2}

b) Ta có: 6n+1 chia hết cho 3n-1

=>(6n-2)+2+1 chia hết cho 3n-1

=>2(3n-1) +3 chia hết cho 3n-1

Mà 2(3n-1) chia hết cho 3n-1

=> 3 chia hết cho 3n-1

=> 3n-1 thuộc Ư(3)={1;3;-1;-3}

=> 3n thuộc {2;4;0;-2}

=>n thuộc {2/3 ; 4/3 ; 0 ; -2/3}

Mà n thuộc Z

=>n=0

3 tháng 5 2017

b) Ta có 

\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2.\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)

3 n + 6 là ước nguyên của 9

\(3n+6=1\Rightarrow n=-\frac{5}{3}\)(loại)

\(3n+6=3\Rightarrow n=-1\)( chọn )

\(3n+6=9\Rightarrow n=1\)( chọn )

\(3n+6=-1\Rightarrow n=-\frac{7}{3}\)( loại )

\(3n+6=-3\Rightarrow n=-3\)( chọn )

\(3n+6=-9\Rightarrow n=-5\)( chọn )

KL : \(n\in\){ 1; -1; -3; -5 }

Ai thấy đúng thì ủng hộ nha!!

12 tháng 2 2019

Ta có 

\(3n+1=3n-6+7\)

                 \(=3\left(n-2\right)+7\)

Do 3(n-2) chia hết cho n-2 nên để 3n+1 chia hết cho n-2 thì 7 phải chia hết cho n-2

suy ra \(n-2\in U_{\left(7\right)}\)

\(\Rightarrow n-2\in\left\{-7;-1;1;7\right\}\)

\(\Rightarrow n\in\left\{-5;1;3;9\right\}\)

Vậy.............

12 tháng 2 2019

\(\left(3n+1\right)⋮\left(n-2\right)\)

\(\Rightarrow\left(3n-6+7\right)⋮\left(n-2\right)\)

Vì \(\left(3n-6\right)⋮\left(n-2\right)\)nên \(7⋮\left(n-2\right)\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(TH1:n-2=-7\)

\(\Rightarrow n=-7+2\)

\(\Rightarrow n=-5\)

\(TH2:n-2=-1\)

\(\Rightarrow n=-1+2\)

\(\Rightarrow n=1\)

\(TH3:n-2=1\)

\(\Rightarrow n=1+2\)

\(\Rightarrow n=3\)

\(TH4:n-2=7\)

\(\Rightarrow n=7+2\)

\(\Rightarrow n=10\)

Vậy \(n\in\left\{-5;1;3;10\right\}\)

23 tháng 1 2022

\(\left(3n+1\right)⋮\left(n-2\right).\)
\(\Rightarrow\left(3n-6+7\right)⋮\left(n-2\right).\)
Vì \(\left(3n-6\right)⋮\left(n-2\right)\)nên \(7⋮\left(n-2\right)\).
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}.\)
\(TH1:n-2=-7\).
\(\Rightarrow n=-7-2.\)
\(\Rightarrow n=-5\).
\(TH2:n-2=-1\).
\(\Rightarrow n=-1+2\).
\(\Rightarrow n=1\).
\(TH3:n-2=1.\)
\(\Rightarrow n=1+2\).
\(\Rightarrow n=3.\)
\(TH4:n-2=7.\)
\(\Rightarrow n=7+2\).
\(\Rightarrow n=10.\)
Vậy \(n\in\left\{-5;1;;3;10\right\}\)

23 tháng 1 2022

3n+1=3n-6+7=3*[n-2]+7

=> 7 chia hết n-2

20 tháng 2 2020

1) Ta có: 6n-1=2(3n+2)-5

Để 6n-1 chia hết cho 3n+2 thì 2(3n+2)-5 phải chia hết cho 3n+2

=> -5 phải chia hết cho 3n+2 vì 2(3n+2) chia hết cho 3n+2
Vì \(n\inℤ\Rightarrow3n+2\inℤ\Rightarrow3n+2\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng giá trị

3n+2-5-115
3n-7-3-13
n\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1


Đối chiếu điều kiện \(x\inℤ\)
Vậy n=\(\pm1\)

20 tháng 2 2020

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\Rightarrow\frac{1}{6}+\frac{y}{3}=\frac{5}{x}\)

\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{5}{x}\)

\(\Rightarrow x\left(1+2y\right)=30\)

\(\Rightarrow x;1+2y\inƯ\left(30\right)=\left\{\pm1;\pm3;\pm5;\pm6;\pm10\pm30\right\}\)

Vì 2y là số chẵn => 1+2y là số lẻ

=> 1+2y là ước lẻ của 30

Ta có bảng:

x-5-3-1135
1+2y-6-10-3030106
2y-5-9-292995
y\(\frac{-5}{2}\)\(\frac{-9}{2}\)\(\frac{-29}{2}\)\(\frac{29}{2}\)\(\frac{9}{2}\)\(\frac{5}{2}\)

=> x;y \(\in\varnothing\)